
Chapter 6

Compilation

The model of evaluation introduced in Section 2.3 and formalized in Section 3.6
builds only on the expressions of the Mini-ML language itself. This leads very
naturally to an interpreter in Elf which is given in Section 4.3. Our specification of
the operational semantics is in the style of natural semantics which very often lends
itself to direct, though inefficient, execution. The inefficiency of the interpreter
in 4.3 is more than just a practical issue, since it is clearly the wrong model if we
would like to reason about the complexity of functions defined in Mini-ML. One can
refine the evaluation model in two ways: one is to consider more efficient interpreters
(see Exercises 2.12 and 4.2), another is to consider compilation. In this chapter we
pursue the latter possibility and describe and prove the correctness of a compiler
for Mini-ML.

In order to define a compiler we need a target language for compilation, that is,
the language into which programs in the source language are translated. This target
language has its own operational semantics, and we must show the correctness of
compilation with respect to these two languages and their semantics. The ultimate
target language for compilation is determined by the architecture and instruction
set of the machine the programs are to be run on. In order to insulate compilers
from the details of particular machine architectures it is advisable to design an
intermediate language and execution model which is influenced by a set of target
architectures and by constructs of the source language. We refer to this intermedi-
ate level as an abstract machine. Abstract machine code can then itself either be
interpreted or compiled further to actual machine code. In this chapter we take a
stepwise approach to compilation, using two intermediate forms between Mini-ML
and a variant of the SECD machine [Lan64] which is also related to the Categorical
Abstract Machine (CAM) [CCM87]. This decomposition simplifies the correctness
proofs and localizes ideas which are necessary to understand the compiler in its
totality.

145

146 CHAPTER 6. COMPILATION

The material presented in this chapter follows work by Hannan [HM90, Han91],
both in general approach and in many details. An extended abstract that also
addresses correctness issues and methods of formalization can be found in [HP92].
A different approach to compilation using continuations may be found in Section ??.

6.1 An Environment Model for Evaluation

The evaluation judgment e ↪→ v requires that all information about the state of the
computation is contained in the Mini-ML expression e. The application of a function
formed by λ-abstraction, lam x. e, to an argument v thus requires the substitution
of v for x in e and evaluation of the result. In order to avoid this substitution
it may seem reasonable to formulate evaluation as a hypothetical judgment (e is
evaluated under the hypothesis that x evaluates to v) but this attempt fails (see
Exercise 6.1). Instead, we allow free variables in expressions which are given values
in an environment, which is explicitly represented as part of a revised evaluation
judgment. Variables are evaluated by looking up their value in the environment;
previously we always eliminated them by substitution, so no separate rule was
required. However, this leads to a problem with the scope of variables. Consider
the expression lam y. x in an environment that binds x to z. According to our
natural semantics the value of this expression should be lam y. z, but this requires
the substitution of z for x. Simply returning lam y. x is incorrect if this value
may later be interpreted in an environment in which x is not bound, or bound
to a different value. The practical solution is to return a closure consisting of an
environment η and an expression lam y. e. η must contain at least all the variables
free in lam y. e. We ignore certain questions of efficiency in our presentation and
simply pair up the complete current environment with the expression to form the
closure.

This approach leads to the question how to represent environments and closures.
A simple solution is to represent an environment as a list of values and a variable
as a pointer into this list. It was de Bruijn’s idea [dB72] to implement such pointers
as natural numbers where n refers to the nth element of the environment list. This
works smoothly if we also represent bound variables in this fashion: an occurence
of a bound variable points backwards to the place where it is bound. This pointer
takes the form of a positive integer, where 1 refers to the innermost binder and 1
is added for every binding encountered when going upward through the expression.
For example

lam x. lam y. x (lam z. y z)

would be written as
Λ (Λ (2 (Λ (2 1))))

where Λ binds an (unnamed) variable. In this form expressions that differ only
in the names of their bound variables are syntactically identical. If we restrict

6.1. AN ENVIRONMENT MODEL FOR EVALUATION 147

attention to pure λ-terms for the moment, this leads to the definition

de Bruijn Expressions D ::= n | ΛD | D1 D2

de Bruijn Indices n ::= 1 | 2 | . . .

Instead of using integers and general arithmetic operations on them, we use only
the integer 1 to refer to the innermost element of the environment and the operator
↑ (read: shift, written in post-fix notation) to increment variable references. That
is, the integer n+ 1 is represented as

1 ↑ · · · ↑︸ ︷︷ ︸
n times

.

But ↑ can also be applied to other expressions, in effect raising each integer in the
expression by 1. For example, the expression

lam x. lam y. x x

can be represented by
Λ (Λ ((1↑) (1↑)))

or
Λ (Λ ((1 1)↑)).

This is a very simple form of a λ-calculus with explicit substitutions where ↑ is the
only available substitution (see [ACCL91]).

Modified de Bruijn Expressions F ::= 1 | F↑ | ΛF | F1 F2

We use the convention that the postfix operator ↑ binds stronger than application
which in turn binds stronger that the prefix operator Λ. Thus the two examples
above can be written as Λ Λ 1↑ 1↑ and Λ Λ (1 1)↑, respectively.

The next step is to introduce environments. These depend on values and vice
versa, since a closure is a pair of an environment and an expression, and an envi-
ronment is a list of values. This can be carried to the extreme: in the Categorical
Abstract Machine (CAM), for example, environments are built as iterated pairs and
are thus values. Our representation will not make this identification. Since we have
simplified our language to a pure λ-calculus, the only kind of value which can arise
is a closure.

Environments η ::= · | η,W
Values W ::= {η;F}

We write w for parameters ranging over values. During the course of evaluation, only
closures over Λ-expressions will arise, that is, all closures have the form {η; ΛF ′}
(see Exercise 6.2).

The specification of modified de Bruijn expressions, values, and environments
is straightforward. The abstract syntax is now first-order, since the language does
not contain any name binding constructs.

148 CHAPTER 6. COMPILATION

exp’ : type. %name exp’ F f.

1 : exp’.

^ : exp’ -> exp’. %postfix 20 ^.

lam’ : exp’ -> exp’.

app’ : exp’ -> exp’ -> exp’.

% Environments and values

env : type. %name env N.

val : type. %name val W w.

empty : env.

, : env -> val -> env. %infix left 10 ,.

clo : env -> exp’ -> val.

There are two main judgments that achieve compilation: one relates a de Bruijn
expression F in an environment η to an ordinary expression e, another relates a
value W to an expression v. We also need an evaluation judgment relating de
Bruijn expressions and values in a given environment.

η ` F ↔ e F translates to e in environment η
W ⇔ v W translates to v
η ` F ↪→W F evaluates to W in environment η

When we evaluate a given expression e using these judgments, we translate it to a de
Bruijn expression F in the empty environment, evaluate F in the empty environment
to obtain a value W , and then translate W to an expression v in the original
language. This is depicted in the following diagram.

e

F W

v

?

C :: · ` F ↔ e

-

D′ :: · ` F ↪→W

6

U :: W ⇔ v

-

D :: e ↪→ v

The correctness of this phase of compilation can then be decomposed into two
statements. For completeness, we assume that D and therefore e and v are given,
and we would like to show that there exist C, D′, and U completing the diagram.
This means that for every evaluation of e to a value v, this value could also have
been produced by evaluating the compiled expression and translating the resulting
value back to the original language. The dual of this is soundness: we assume that

6.1. AN ENVIRONMENT MODEL FOR EVALUATION 149

C, D′ and U are given and we have to show that an evaluation D exists. That
is, every value which can be produced by compilation and evaluation of compiled
expressions can also be produced by direct evaluation.

We will continue to restrict ourselves to expressions built up only from ab-
straction and application. When we generalize this later only the case of fixpoint
expressions will introduce an essential complication. First we define evaluation of
de Bruijn expressions in an environment η, written as η ` F ↪→ W . The vari-
able 1 refers to the first value in the environment (counting from right to left); its
evaluation just returns that value.

fev 1
η,W ` 1 ↪→W

The meaning of an expression F↑ in an environment η,W is the same as the meaning
of F in the environment η. Intuitively, the environment references from F into η
are shifted by one. The typical case is one where a reference to the nth value in η
is represented by the expression 1↑ · · · ↑, where the shift operator is applied n − 1
times.

η ` F ↪→W
fev ↑

η,W ′ ` F↑ ↪→W

A functional abstraction usually immediately evaluates to itself. Here this is in-
sufficient, since an expression ΛF may contain references to the environment η.
Thus we need to combine the environment η with ΛF to produce a closed (and
self-contained) value.

fev lam
η ` ΛF ↪→ {η; ΛF}

In order to evaluate F1 F2 in an environment η we evaluate both F1 and F2 in that
environment, yielding the closure {η′; ΛF ′1} and value W2, respectively. We then
add W2 to the environment η′, in effect binding the variable previously bound by
Λ in ΛF ′1 to W2 and then evaluate F ′1 in the extended environment to obtain the
overall value W .

η ` F1 ↪→ {η′; ΛF ′1} η ` F2 ↪→W2 η′,W2 ` F ′1 ↪→W
fev app

η ` F1 F2 ↪→W

Here is the implementation of this judgment as the type family feval in Elf.

feval : env -> exp’ -> val -> type. %name feval D’.

%mode feval +N +F -W.

% Variables

fev_1 : feval (N , W) 1 W.

fev_^ : feval (N , W’) (F ^) W

150 CHAPTER 6. COMPILATION

<- feval N F W.

% Functions

fev_lam : feval N (lam’ F) (clo N (lam’ F)).

fev_app : feval N (app’ F1 F2) W

<- feval N F1 (clo N’ (lam’ F1’))

<- feval N F2 W2

<- feval (N’ , W2) F1’ W.

We have written this signature in a way that emphasizes its operational reading,
because it serves as an implementation of an interpreter. As an example, consider
the evaluation of the expression (Λ (Λ (1↑))) (Λ 1), which is a representation of
(lam x. lam y. x) (lam v. v).

?- D : feval empty (app’ (lam’ (lam’ (1 ^))) (lam’ 1)) W.

W = clo (empty , clo empty (lam’ 1)) (lam’ (1 ^)).

D’ = fev_app fev_lam fev_lam fev_lam.

The resulting closure, {(·, {·,Λ1}); Λ(1↑)}, represents the de Bruijn expressions
Λ(Λ1), since (1↑) refers to the first value in the environment.

The translation between ordinary and de Bruijn expressions is specified by the
following rules which employ a parametric and hypothetical judgment.

η ` F1 ↔ e1 η ` F2 ↔ e2
tr app

η ` F1 F2 ↔ e1 e2

u
w⇔ x

...
η, w ` F ↔ e

tr lamw,x,u

η ` ΛF ↔ lam x. e

W ⇔ e
tr 1

η,W ` 1↔ e

η ` F ↔ e
tr ↑

η,W ` F↑ ↔ e

where the rule tr lam is restricted to the case where w and x are new parameters
not free in any other hypothesis, and u is a new label. The translation of values is
defined by a single rule in this language fragment.

η ` ΛF ↔ lam x. e
vtr lam

{η; ΛF} ⇔ lam x. e

As remarked earlier this translation can be non-deterministic if η and e are given
and F is to be generated. This is the direction in which this judgment would be
used for compilation. Here is an example of a translation.

6.1. AN ENVIRONMENT MODEL FOR EVALUATION 151

u
w ⇔ x

tr 1
·, w ` 1↔ x

tr ↑
·, w, w′ ` 1↑ ↔ x

tr lamw,′,y,u′

·, w ` Λ1↑ ↔ lam y. x
tr lamw,x,u

· ` ΛΛ1↑ ↔ lam x. lam y. x

u′′
w′′ ⇔ v

tr 1
·, w′′ ` 1↔ v

tr lamw′′,v,u′′

· ` Λ1↔ lam v. v
tr app

· ` (ΛΛ1↑) (Λ1)↔ (lam x. lam y. x) (lam v. v)

The representation of the translation judgment relies on the standard technique
for representing deductions of hypothetical judgments as functions.

trans : env -> exp’ -> exp -> type. %name trans C.

vtrans : val -> exp -> type. %name vtrans U.

% can be used in different directions

%mode trans +N +F -E.

%mode vtrans +W -V.

% Functions

tr_lam : trans N (lam’ F) (lam E)

<- ({w:val} {x:exp}

vtrans w x -> trans (N , w) F (E x)).

tr_app : trans N (app’ F1 F2) (app E1 E2)

<- trans N F1 E1

<- trans N F2 E2.

% Variables

tr_1 : trans (N , W) 1 E

<- vtrans W E.

tr_^ : trans (N , W) (F ^) E

<- trans N F E.

% Values

vtr_lam : vtrans (clo N (lam’ F)) (lam E)

<- trans N (lam’ F) (lam E).

The judgment
u

w⇔ x
...

η, w ` F ↔ e

152 CHAPTER 6. COMPILATION

in the premiss of the tr lam is parametric in the variables w and x and hypothetical
in u. It is represented by a function which, when given a value W ′, an expression
e′, and a deduction U ′ :: W ′ ⇔ e′ returns a deduction D′ :: η,W ′ ` F ↔ [e′/x]e.
This property is crucial in the proof of compiler correctness.

The signature above can be executed as a non-deterministic program for trans-
lation between de Bruijn and ordinary expressions in both directions. For the
compilation of expressions it is important to keep the clauses tr_1 and tr_^ in the
given order so as to avoid unnecessary backtracking. This non-determinism arises,
since the expression E in the rules tr_1 and tr_^ does not change in the recursive
calls. For other possible implementations see Exercise 6.3. Here is an execution
which yields the example deduction above.

?- C : trans empty F (app (lam [x] lam [y] x) (lam [z] z)).

F = app’ (lam’ (lam’ (1 ^))) (lam’ 1).

C =

tr_app (tr_lam ([w:val] [x:exp] [u3:vtrans w x] tr_1 u3))

(tr_lam

([w:val] [x:exp] [u1:vtrans w x]

tr_lam ([w1:val] [x1:exp] [u2:vtrans w1 x1]

tr_^ (tr_1 u1)))).

It is not immediately obvious that every source expression e can in fact be
compiled using this judgment. This is the subject of the following theorem.

Theorem 6.1 For every closed expression e there exists a de Bruijn expression F
such that · ` F ↔ e.

Proof: A direct attempt at an induction argument fails—a typical situation when
proving properties of judgments which involve hypothetical reasoning. However,
the theorem follows immediately from Lemma 6.2 below. 2

Lemma 6.2 Let w1, . . . , wn be parameters ranging over values and let η be the
environment ·, wn, . . . , w1. Furthermore, let x1, . . . , xn range over expression vari-
ables. For any expression e with free variables among x1, . . . , xn there exists a de
Bruijn expression F and a deduction C of η ` F ↔ e from hypotheses u1 :: w1 ⇔
x1, . . . , un :: wn ⇔ xn.

Proof: By induction on the structure of e.

Case: e = e1 e2. By induction hypothesis on e1 and e2, there exist F1 and F2 and
deductions C1 :: η ` F1 ↔ e1 and C2 :: η ` F2 ↔ e2. Applying the rule tr app
to C1 and C2 yields the desired deduction C :: η ` F1 F2 ↔ e1 e2.

6.1. AN ENVIRONMENT MODEL FOR EVALUATION 153

Case: e = lam x. e1. Here we apply the induction hypothesis to the expression
e1, environment η, w for a new parameter w, and hypotheses u1 :: w1 ⇔
x1, . . . , un :: wn ⇔ xn, u :: w ⇔ x to obtain an F1 and a deduction

u
w ⇔ x
C1

η, w ` F1 ↔ e1

possibly also using hypotheses labelled u1, . . . , un. Note that e1 is an ex-
pression with free variables among x1, . . . , xn, x. Applying the rule tr lam
discharges the hypothesis u and we obtain the desired deduction

C =

u
w ⇔ x
C1

η, w ` F1 ↔ e1

tr lamu

η ` ΛF1 ↔ lam x. e1

Case: e = x. Then x = xi for some i between 1 and n and we let F = 1 ↑ · · · ↑︸ ︷︷ ︸
i−1 times

and

C =

ui
wi ⇔ xi

tr 1
·, wn, . . . , wi ` 1↔ xi

tr ↑
· · ·

tr ↑
·, wn, . . . , w1 ` 1↑ · · · ↑ ↔ xi

2

This proof cannot be represented directly in Elf because we cannot employ the
usual technique for representing hypothetical judgments as functions. The difficulty
is that the order of the hypotheses is important for returning the correct variable
1↑ · · · ↑, but hypothetical judgments are generally invariant under reordering of hy-
potheses. Hannan [Han91] has suggested a different, deterministic translation for
which termination is relatively easy to show, but which complicates the proofs of the
remaining properties of compiler correctness. Thus our formalization does not cap-
ture the desirable property that compilation always terminates. All the remaining
parts, however, are implemented. The first property states that translation followed
by evaluation leads to the same result as evaluation followed by translation. We
generalize this for arbitrary environments η in order to allow a proof by induction.

154 CHAPTER 6. COMPILATION

This property is depicted in the following diagram.

e

η;F W

v

?

C :: η ` F ↔ e

-

D :: e ↪→ v

.-
D′ :: η ` F ↪→W

..

..

..

..6
U :: W ⇔ v

The solid lines indicate deductions that are assumed, dotted lines represent the
deductions whose existence we assert and prove below.

Lemma 6.3 For any closed expressions e and v, environment η, de Bruijn expres-
sion F , deductions D :: e ↪→ v and C :: η ` F ↔ e, there exist a value W and
deductions D′ :: η ` F ↪→W and U :: W ⇔ v.

Proof: By induction on the structures of D :: e ↪→ v and C :: η ` F ↔ e. In
this induction we assume the induction hypothesis on the premisses of D and for
arbitrary C and on the premisses of C, but for the same D. This is sometimes called
lexicographic induction on the pair consisting of D and C. It should be intuitively
clear that this form of induction is valid. We represent this proof as a judgment
relating the four deductions involved in the diagram.

map_eval : eval E V -> trans N F E

-> feval N F W -> vtrans W V -> type.

%mode map_eval +D +C -D’ -U.

Case: C ends in an application of the tr 1 rule.

C =

U1

W1 ⇔ e
tr 1

η1,W1 ` 1↔ e

D :: e ↪→ v Assumption
C1 :: η′1 ` ΛF ′1 ↔ e and W1 = {η′1; ΛF ′1} By inversion on U1

e = lam x. e1 By inversion on C1
v = lam x. e1 = e By inversion on D

Then W = W1, U = U1 :: W1 ⇔ e and D′ = fev 1 :: η1,W1 ` 1 ↪→ W1 satisfy
the requirements of the theorem. This case is captured in the clause

mp_1 : map_eval (ev_lam) (tr_1 (vtr_lam (tr_lam C2)))

(fev_1) (vtr_lam (tr_lam C2)).

6.1. AN ENVIRONMENT MODEL FOR EVALUATION 155

Case: C ends in an application of the tr ↑ rule.

C =

C1
η1 ` F1 ↔ e

tr ↑
η1,W

′
1 ` F1↑ ↔ e

D :: e ↪→ v Assumption
D′1 :: η1 ` F1 ↪→W1

and U1 :: W1 ⇔ v By ind. hyp. on D and C1

Now we let W = W1, U = U1, and obtain D′ :: η1,W
′
1 ` F1↑ ↪→ W1 by fev ↑

from D′1.

mp_^ : map_eval D (tr_^ C1) (fev_^ D1’) U1

<- map_eval D C1 D1’ U1.

For the remaining cases we assume that the previous two cases do not apply. We
refer to this assumption as exclusion.

Case: D ends in an application of the ev lam rule.

D = ev lam
lam x. e1 ↪→ lam x. e1

C :: η ` F ↔ lam x. e1 By assumption
F = ΛF1 By inversion and exclusion

Then we let W = {η; ΛF1}, D′ = fev lam :: η ` ΛF1 ↪→ {η; ΛF1}, and obtain
U :: {η; ΛF1} ⇔ lam x. e1 by vtr lam from C.

mp_lam : map_eval (ev_lam) (tr_lam C1)

(fev_lam) (vtr_lam (tr_lam C1)).

Case: D ends in an application of the ev app rule.

D =

D1

e1 ↪→ lam x. e′1

D2

e2 ↪→ v2

D3

[v2/x]e
′
1 ↪→ v

ev app
e1 e2 ↪→ v

This is the most interesting case, since it contains the essence of the argu-
ment how substitution can be replaced by binding variables to values in an
environment.

156 CHAPTER 6. COMPILATION

C :: η ` F ↔ e1 e2 By assumption
F = F1 F2,
C1 :: η ` F1 ↔ e1, and
C2 :: η ` F2 ↔ e2 By inversion and exclusion
D′2 :: η ` F2 ↪→W2 and
U2 :: W2 ⇔ v2 By ind. hyp. on D2 and C2
D′1 :: η ` F1 ↪→W1 and
U1 :: W1 ⇔ lam x. e′1 By ind. hyp. on D1 and C1
W1 = {η1; ΛF

′
1} and

C′1 :: η1 ` ΛF ′1 ↔ lam x. e′1 By inversion on U1

Applying inversion again to C′1 shows that the premiss must be the deduction
of a hypothetical judgment. That is,

C′1 =

u
w ⇔ x
C3

η1, w ` F ′1 ↔ e′1

where w is a new parameter ranging over values. This judgment is parametric
in w and x and hypothetical in u. We can thus substitute W2 for w, v2 for x,
and U2 for u to obtain a deduction

C′3 :: η1,W2 ` F ′1 ↔ [v2/x]e
′
1.

Now we apply the induction hypothesis to D3 and C′3 to obtain a W3 and

D′3 :: η1,W2 ` F ′1 ↪→W3 and
U3 :: W3 ⇔ v.

We let W = W3, U = U3, and obtain D′ :: η ` F1 F2 ↪→ W by fev app from
D′1, D′2, and D′3.
The implementation of this relatively complex reasoning employs again the
magic of hypothetical judgments: the substitution we need to carry out to
obtain C′3 from C3 is implemented as a function application.

mp_app : map_eval (ev_app D3 D2 D1) (tr_app C2 C1)

(fev_app D3’ D2’ D1’) U3

<- map_eval D1 C1 D1’ (vtr_lam (tr_lam C3))

<- map_eval D2 C2 D2’ U2

<- map_eval D3 (C3 W2 V2 U2) D3’ U3.

This completes the proof once we have convinced ourselves that all possible cases
have been considered. Note that whenever C ends in an application of the tr 1 or
tr ↑ rules, then the first two cases apply. Otherwise one of the other two cases must
apply, depending on the shape of D. 2

6.1. AN ENVIRONMENT MODEL FOR EVALUATION 157

Theorem 6.1 and Lemma 6.3 together guarantee completeness of the translation.

Theorem 6.4 (Completeness) For any closed expressions e and v and evaluation
D :: e ↪→ v, there exist a de Bruijn expression F , a value W and deductions C :: · `
F ↔ e, D′ :: · ` F ↪→W , and U :: W ⇔ v.

Proof: Lemma 6.3 shows that an evaluation D′ :: η ` F ↪→ W and a translation
W ⇔ v exist for any translation C :: η ` F ↔ e. Theorem 6.1 shows that a
particular F and translation C :: · ` F ↔ e exist, thus proving the theorem. 2

Completeness is insufficient to guarantee compiler correctness. For example,
the translation of values W ⇔ v could relate any expression v to any value W ,
which would make the statement of the previous theorem almost trivially true. We
need to check a further property, namely that any value which could be produced
by evaluating the compiled code, could also be produced by direct evaluation as
specified by the natural semantics. This is shown in the diagram below.

e

η;F W

v

?

C :: η ` F ↔ e

-

D′ :: η ` F ↪→W

6

U :: W ⇔ v

. .-
D :: e ↪→ v

We call this property soundness of the compiler, since it prohibits the compiled code
from producing incorrect values. We prove this from a lemma which asserts the
existence of an expression v, evaluation D and translation U , given the translation
C and evaluation D′. This yields the theorem by showing that the translation
U :: W ⇔ v, is uniquely determined from W .

Lemma 6.5 For any closed expression e, de Bruijn expression F , environment η,
value W , deductions D′ :: η ` F ↪→W and C :: η ` F ↔ e, there exist an expression
v and deductions D :: e ↪→ v and U :: W ⇔ v.

Proof: The proof proceeds by a straightforward induction over the structure of
D′ :: η ` F ↪→ W . It heavily employs inversion (as the proof of completeness,
Lemma 6.3). Interestingly, this proof can be implemented by literally the same
judgment. We leave it as exercise 6.6 to write out the informal proof—its represen-
tation from the proof of completeness is summarized below. Using is as a program
in this instance means that we assume that second and third arguments are given
and the first and last argument are logic variables whose instantiation terms are to
be constructed.

158 CHAPTER 6. COMPILATION

map_eval’ : eval E V -> trans N F E

-> feval N F W -> vtrans W V -> type.

%mode map_eval’ -D +C +D’ -U.

mp’_1 : map_eval’ (ev_lam) (tr_1 (vtr_lam (tr_lam C2)))

(fev_1) (vtr_lam (tr_lam C2)).

mp’_^ : map_eval’ D (tr_^ C1) (fev_^ D1’) U1

<- map_eval’ D C1 D1’ U1.

mp’_lam : map_eval’ (ev_lam) (tr_lam C1)

(fev_lam) (vtr_lam (tr_lam C1)).

mp’_app : map_eval’ (ev_app D3 D2 D1) (tr_app C2 C1)

(fev_app D3’ D2’ D1’) U3

<- map_eval’ D1 C1 D1’ (vtr_lam (tr_lam C3))

<- map_eval’ D2 C2 D2’ U2

<- map_eval’ D3 (C3 W2 V2 U2) D3’ U3.

%terminates D’ (map_eval’ _ C D’ _).

2

Theorem 6.6 (Uniqueness of Translations) For any value W if there exist a v
and a translation U :: W ⇔ v, then v and U are unique. Furthermore, for any
environment η and de Bruijn expression F , if there exist an e and a translation
C :: η ` F ↔ e, then e and C are unique.

Proof: By simultaneous induction on the structures of U and C. In each case, either
W or F uniquely determine the last inference. Since the translated expressions in
the premisses are unique by induction hypothesis, so is the translated value in the
conclusion. 2

The proof requires no separate implementation in Elf in the same way that
appeals to inversion remain implicit in the formulation of higher-level judgments.
It is obtained by direct inspection of properties of the inference rules.

Theorem 6.7 (Soundness) For any closed expressions e and v, de Bruijn expres-
sion F , environment η, value W , deductions D′ :: η ` F ↪→W , C :: η ` F ↔ e, and
U :: W ⇔ v, there exists a deduction D :: e ↪→ v.

Proof: From Lemma 6.5 we infer the existence of a v, U , and D, given C and D′.
Theorem 6.6 shows that v and U are unique, and thus the property must hold for
all v and U :: W ⇔ v, which is what we needed to show. 2

6.2. ADDING DATA VALUES AND RECURSION 159

6.2 Adding Data Values and Recursion

In the previous section we treated only a very restricted core language of Mini-
ML. In this section we will extend the compiler to the full Mini-ML language as
presented in Chapter 2. The main additions to the core language which affect the
compiler are data values (such as natural numbers and pairs) and recursion. The
language of de Bruijn expressions is extended by allowing constructors that parallel
ordinary expressions. We maintain a similar syntax, but mark de Bruijn expression
constructors with a prime (′).

Expressions F ::= | z′ | s′ F | case′ F1 F2 F3 Natural Numbers
| 〈F1, F2〉′ | fst′ F | snd′ F Pairs
| ΛF | F1 F2 Functions
| let′ val F1 in F2 Definitions
| let′ name F1 in F2

| fix′ F Recursion
| 1 | F↑ Variables

Expressions of the form F↑ are not necessarily variables (where F is a sequence of
shifts applied to 1), but it may be intuitively helpful to think of them that way.
In the representation we need only first-order constants, since this language has no
constructs binding variables by name.

exp’ : type. %name exp’ F f.

1 : exp’.

^ : exp’ -> exp’. %postfix 20 ^.

z’ : exp’.

s’ : exp’ -> exp’.

case’ : exp’ -> exp’ -> exp’ -> exp’.

pair’ : exp’ -> exp’ -> exp’.

fst’ : exp’ -> exp’.

snd’ : exp’ -> exp’.

lam’ : exp’ -> exp’.

app’ : exp’ -> exp’ -> exp’.

letv’ : exp’ -> exp’ -> exp’.

letn’ : exp’ -> exp’ -> exp’.

fix’ : exp’ -> exp’.

Next we need to extend the language of values. While data values can be
added in a straightforward fashion, let name and recursion present some difficulties.
Consider the evaluation rule for fixpoints.

[fix x. e/x]e ↪→ v
ev fix

fix x. e ↪→ v

160 CHAPTER 6. COMPILATION

We introduced the environment model of evaluation in order to eliminate the need
for explicit substitution, where an environment is a list of values. In the case of the
fixpoint construction we would need to bind the variable x to the expression fix x. e
in the environment in order to avoid substutition, but fix x. e is not a value. The
evaluation rules for de Bruijn expressions take advantage of the invariant that an
environment contains only values. In particular, the rule

fev 1
η,W ` 1 ↪→W

requires that an environment contain only values. We will thus need to add a
new environment constructor η+F in order to allow unevaluated expressions in the
environment. These considerations yield the following mutually recursive definitions
of environments and values. We mark data values with a star (∗) to distinguish them
from expressions and de Bruijn expressions with the same name.

Environments η ::= · | η,W | η + F
Values W ::= | z∗ | s∗ W Natural Numbers

| 〈W1,W2〉∗ Pairs
| {η;F} Closures

The Elf representation is direct.

env : type. %name env N.

val : type. %name val W w.

empty : env.

, : env -> val -> env. %infix left 10 ,.

+ : env -> exp’ -> env. %infix left 10 +.

z* : val.

s* : val -> val.

pair* : val -> val -> val.

clo : env -> exp’ -> val.

In the extension of the evaluation rule to this completed language, we must
exercise care in the treatment of the new environment constructor for unevaluated
expression: when such an expression is looked up in the environment, it must be
evaluated.

η ` F ↪→W
fev 1+

η + F ` 1 ↪→W

η ` F ↪→W
fev ↑+

η + F ′ ` F↑ ↪→W

6.2. ADDING DATA VALUES AND RECURSION 161

The rules involving data values generally follow the patterns established in the
natural semantics for ordinary expressions. The main departure from the earlier
formulation is the separation of values from expressions. We show only four of the
relevant rules.

fev z
η ` z′ ↪→ z∗

η ` F ↪→W
fev s

η ` s′ F ↪→ s∗ W

η ` F1 ↪→ z∗ η ` F2 ↪→W
fev case z

η ` case′ F1 F2 F3 ↪→W

η ` F1 ↪→ s∗ W ′1 η,W ′1 ` F3 ↪→W
fev case s

η ` case′ F1 F2 F3 ↪→W

Evaluating a let val-expression also binds a variable to value by extending the
environment.

η ` F1 ↪→W1 η,W1 ` F2 ↪→W
fev letv

η ` let val′ F1 in F2 ↪→W

Evaluating a let name-expression binds a variable to an expression and thus re-
quires the new environment constructor.

η + F1 ` F2 ↪→W
fev letn

η ` letname′ F1 in F2 ↪→W

Fixpoint expressions are similar, except that the variable is bound to the fix ex-
pression itself.

η + fix′ F ` F ↪→W
fev fix

η ` fix′ F ↪→W

For example, fix x. x (considered on page 17) is represented by fix′ 1. Intuitively,
evaluation of this expression should not terminate. An attempt to construct an
evaluation leads to the sequence

...
fev fix

· ` fix′ 1 ↪→W
fev 1+

·+fix′ 1 ` 1 ↪→W
fev fix.

· ` fix′ 1 ↪→W

The implementation of these rules in Elf poses no particular difficulties. We
show only the rules from above.

162 CHAPTER 6. COMPILATION

feval : env -> exp’ -> val -> type. %name feval D.

%mode feval +N +F -W.

% Variables

fev_1 : feval (N , W) 1 W.

fev_^ : feval (N , W’) (F ^) W

<- feval N F W.

fev_1+ : feval (N + F) 1 W

<- feval N F W.

fev_^+ : feval (N + F’) (F ^) W

<- feval N F W.

% Natural Numbers

fev_z : feval N z’ z*.

fev_s : feval N (s’ F) (s* W)

<- feval N F W.

fev_case_z : feval N (case’ F1 F2 F3) W

<- feval N F1 z*

<- feval N F2 W.

fev_case_s : feval N (case’ F1 F2 F3) W

<- feval N F1 (s* W1)

<- feval (N , W1) F3 W.

% Pairs

fev_pair : feval N (pair’ F1 F2) (pair* W1 W2)

<- feval N F1 W1

<- feval N F2 W2.

fev_fst : feval N (fst’ F) W1

<- feval N F (pair* W1 W2).

fev_snd : feval N (snd’ F) W2

<- feval N F (pair* W1 W2).

% Functions

fev_lam : feval N (lam’ F) (clo N (lam’ F)).

fev_app : feval N (app’ F1 F2) W

<- feval N F1 (clo N’ (lam’ F1’))

<- feval N F2 W2

<- feval (N’ , W2) F1’ W.

% Definitions

fev_letv : feval N (letv’ F1 F2) W

6.2. ADDING DATA VALUES AND RECURSION 163

<- feval N F1 W1

<- feval (N , W1) F2 W.

fev_letn : feval N (letn’ F1 F2) W

<- feval (N + F1) F2 W.

% Recursion

fev_fix : feval N (fix’ F) W

<- feval (N + (fix’ F)) F W.

Next we need to extend the translation between expressions and de Bruijn ex-
pressions and values. We show a few interesting cases in the extended judgments
η ` F ↔ e and W ⇔ v. The case for let val is handled just like the case for lam,
since we will always substitute a value for the variable bound by the let during
execution.

tr z
η ` z′ ↔ z

η ` F ↔ e
tr s

η ` s′ F ↔ s e

η ` F1 ↔ e1

u
w⇔ x

...
η, w ` F2 ↔ e2

tr letvw,x,u

η ` let val′ F1 in F2 ↔ let x = e1 in e2

where the right premiss of tr let is parametric in w and x and hypothetical in u.
In order to preserve the basic structure of the proofs of lemmas 6.3 and 6.5, we
must treat the let name and fix constructs somewhat differently: we extend the
environment with an expression parameter (not a value parameter) using the new

164 CHAPTER 6. COMPILATION

environment constructor +.

η ` F1 ↔ e1

u
η ` f ⇔ x

...
η + f ` F2↔ e2

tr letnf,x,u
η ` let name′ F1 in F2 ↔ let x = e1 in e2

u
η ` f ↔ x

...
η + f ` F ↔ e

tr fixf,x,u
η ` fix′ F ↔ fix x. e

η ` F ↔ e
tr 1+

η + F ` 1↔ e

η ` F ↔ e
tr ↑+

η + F ′ ` F↑ ↔ e

Finally, the value translation does not have to deal with fixpoint-expressions (they
are not values). We only show the three new cases.

vtr z
z∗ ⇔ z

W ⇔ v
vtr s

s∗ W ⇔ s v

W1 ⇔ v1 W2 ⇔ v2
vtr pair

〈W1,W2〉∗ ⇔ 〈v1, v2〉

Deductions of parametric and hypothetical judgments are represented by functions,
as usual.

trans : env -> exp’ -> exp -> type. %name trans C.

vtrans : val -> exp -> type. %name vtrans U.

% can be used in different directions

%mode trans +N +F -E.

%mode vtrans +W -V.

% Natural numbers

tr_z : trans N z’ z.

tr_s : trans N (s’ F) (s E)

<- trans N F E.

6.2. ADDING DATA VALUES AND RECURSION 165

tr_case : trans N (case’ F1 F2 F3) (case E1 E2 E3)

<- trans N F1 E1

<- trans N F2 E2

<- ({w:val} {x:exp}

vtrans w x -> trans (N , w) F3 (E3 x)).

% Pairs

tr_pair : trans N (pair’ F1 F2) (pair E1 E2)

<- trans N F1 E1

<- trans N F2 E2.

tr_fst : trans N (fst’ F1) (fst E1)

<- trans N F1 E1.

tr_snd : trans N (snd’ F1) (snd E1)

<- trans N F1 E1.

% Functions

tr_lam : trans N (lam’ F) (lam E)

<- ({w:val} {x:exp}

vtrans w x -> trans (N , w) F (E x)).

tr_app : trans N (app’ F1 F2) (app E1 E2)

<- trans N F1 E1

<- trans N F2 E2.

% Definitions

tr_letv: trans N (letv’ F1 F2) (letv E1 E2)

<- trans N F1 E1

<- ({w:val} {x:exp}

vtrans w x -> trans (N , w) F2 (E2 x)).

tr_letn: trans N (letn’ F1 F2) (letn E1 E2)

<- trans N F1 E1

<- ({f:exp’} {x:exp}

trans N f x -> trans (N + f) F2 (E2 x)).

% Recursion

tr_fix : trans N (fix’ F) (fix E)

<- ({f:exp’} {x:exp}

trans N f x -> trans (N + f) F (E x)).

% Variables

tr_1 : trans (N , W) 1 E <- vtrans W E.

tr_^ : trans (N , W) (F ^) E <- trans N F E.

166 CHAPTER 6. COMPILATION

tr_1+ : trans (N + F) 1 E <- trans N F E.

tr_^+ : trans (N + F’) (F ^) E <- trans N F E.

% Natural number values

vtr_z : vtrans z* z.

vtr_s : vtrans (s* W) (s V)

<- vtrans W V.

% Pair values

vtr_pair : vtrans (pair* W1 W2) (pair V1 V2)

<- vtrans W1 V1

<- vtrans W2 V2.

% Function values

vtr_lam : vtrans (clo N (lam’ F)) (lam E)

<- trans N (lam’ F) (lam E).

In order to extend the proof of compiler correctness in Section 6.1 we need to
extend various lemmas.

Theorem 6.8 For every closed expression e there exists a de Bruijn expression F
such that · ` F ↔ e.

Proof: We generalize analogously to Lemma 6.2 and prove the modified lemma by
induction on the structure of e (see Exercise 6.7). 2

Lemma 6.9 If W ⇔ e is derivable, then e Value is derivable.

Proof: By a straightforward induction on the structure of U :: W ⇔ e. 2

Lemma 6.10 If e Value and e ↪→ v are derivable then e = v.

Proof: By a straightforward induction on the structure of P :: e Value. 2

The Elf implementations of the proofs of Lemmas 6.9 and 6.10 is straightforward
and can be found in the on-line material that accompanies these notes. The type
families are

vtrans_val : vtrans W E -> value E -> type.

%mode vtrans_val +U -P.

val_eval : value E -> eval E E -> type.

%mode val_eval +P -D.

6.2. ADDING DATA VALUES AND RECURSION 167

The next lemma is the main lemma is the proof of completeness, that is, every
value which can obtained by direct evaluation can also be obtained by compilation,
evaluation of the compiled code, and translation of the returned value to the original
language.

Lemma 6.11 For any closed expressions e and v, environment η, de Bruijn ex-
pression F , deduction D :: e ↪→ v and C :: η ` F ↔ e, there exist a value W and
deductions D′ :: η ` F ↪→W and U :: W ⇔ v.

Proof: By induction on the structure of D :: e ↪→ v and C :: η ` F ↔ e. In this
induction, as in the proof of Lemma 6.3, we assume the induction hypothesis on the
premisses of D and for arbitrary C, and on the premisses of C if D remains fixed.
The implementation is an extension of the previous higher-level judgment,

map_eval : eval E V -> trans N F E

-> feval N F W -> vtrans W V -> type.

%mode map_eval +D +C -D’ -U.

We show only some of the typical cases—the others are straightforward and left to
the reader or remain unchanged from the proof of Lemma 6.3

Case: C ends in an application of the tr 1 rule.

C =

U1

W1 ⇔ e
tr 1

η1,W1 ` 1↔ e

This case changes from the previous proof, since there we applied simple
inversion (there was only one possible kind of value) to conclude that e = v.
Here we need two lemmas from above.

D :: e ↪→ v Assumption
P :: e Value By Lemma 6.9 from U1

e = v By Lemma 6.10 from P

Hence we can let W be W1, U be U1, and D′ be fev 1 :: η1,W1 ` 1 ↪→ W1.
The implementation explicitly appeals to the implementations of the lemmas.

mp_1 : map_eval D (tr_1 U1) (fev_1) U1

<- vtrans_val U1 P

<- val_eval P D.

Case: C ends in an application of the tr ↑ rule. This case proceeds as before.

168 CHAPTER 6. COMPILATION

mp_^ : map_eval D (tr_^ C1) (fev_^ D1’) U1

<- map_eval D C1 D1’ U1.

Case: C ends in an application of the tr 1+ rule.

C =

C1
η1 ` F1 ↔ e

tr 1+
η1 + F1 ` 1↔ e

D :: e ↪→ v Assumption
D′1 :: η1 ` F1 ↪→W1 and
U1 :: W1 ⇔ v By ind. hyp. on D and C1
D′ :: η1 + F1 ` 1 ↪→W By fev 1+ from D′1

and we can let W = W1 and U = U1.

mp_1+ : map_eval D (tr_1+ C1) (fev_1+ D1’) U1

<- map_eval D C1 D1’ U1.

Case: C ends in an application of the tr ↑+ rule. This case is just like the tr ↑ case.

mp_^+ : map_eval D (tr_^+ C1) (fev_^+ D1’) U1

<- map_eval D C1 D1’ U1.

For the remaining cases we may assume that none of the four cases above apply.
We only show the case for fixpoints.

Case: D ends in an application of the ev fix rule.

D =

D1

[fix x. e1/x]e1 ↪→ v
ev fix

fix x. e1 ↪→ v

C :: η ` F ↔ fix x. e1 By assumption

By inversion and exclusion (of the previous cases), C must end in an applica-
tion of the tr fix rule and thus F = fix′ F1 for some F1 and there is a deduction
C1, parametric in f and x and hypothetical in u, of the form

u
η ` f ↔ x
C1

η + f ` F1 ↔ e1

6.2. ADDING DATA VALUES AND RECURSION 169

In this deduction we can substitute fix′ F1 for f and fix x. e1 for x, and
replace the resulting hypothesis u :: η ` fix′ F1 ↔ fix x. e1 by C! This way
we obtain a deduction

C′1 :: η + fix′ F1 ` F1 ↔ [fix x. e1/x]e1.

Now we can apply the induction hypothesis to D1 and C′1 which yields a W1

and deductions

D′1 :: η + fix′ F1 ` F1 ↪→W1 and
U1 :: W1 ⇔ v By ind. hyp. on D1 and C′1

Applying fev fix to D′1 results in a deduction

D′ :: η ` fix′ F1 ↪→W1

and we let W be W1 and U be U1. In Elf, the substitutions into the hypothet-
ical deduction are implemented by applications of the representing function
C1.

mp_fix : map_eval (ev_fix D1) (tr_fix C1)

(fev_fix D1’) U1

<- map_eval D1 (C1 (fix’ F1) (fix E1) (tr_fix C1))

D1’ U1.

2

This lemma and the totality of the translation relation in its expression argument
(Theorem 6.8) together guarantee completeness of the translation.

Theorem 6.12 (Completeness) For any closed expressions e and v and evaluation
D :: e ↪→ v, there exist a de Bruijn expression F , a value W and deductions C :: · `
F ↔ e, D′ :: · ` F ↪→W , and U :: W ⇔ v.

Proof: As in the proof of Theorem 6.4, but using Lemma 6.11 and Theorem 6.8
instead of Lemma 6.3 and Theorem 6.1. 2

Lemma 6.13 For any closed expression e, de Bruijn expression F , environment η,
value W , deduction D′ :: η ` F ↪→W and C :: η ` F ↔ e, there exist an expression
v and deductions D :: e ↪→ v and U :: W ⇔ v.

Proof: By induction on the structure of D′ :: η ` F ↪→ W . The family map_eval

which implements the main lemma in the soundness proof, also implements the
proof of this lemma without any change. 2

170 CHAPTER 6. COMPILATION

Theorem 6.14 (Uniqueness of Translations) For any value W if there exist a v
and a translation U :: W ⇔ v, then v and U are unique. Furthermore, for any
environment η and de Bruijn expression F , if there exist an e and a translation
C :: η ` F ↔ e, then e and C are unique.

Proof: As before, by a simultaneous induction on the structures of U and C. 2

Theorem 6.15 (Soundness) For any closed expressions e and v, de Bruijn expres-
sion F , environment η, value W , deductions D′ :: η ` F ↪→W , C :: η ` F ↔ e, and
U :: W ⇔ v, there exists a deduction D :: e ↪→ v.

Proof: From Lemma 6.13 we infer the existence of a v, U , and D, given C and D′.
Theorem 6.14 shows that v and U are unique, and thus the property must hold for
all v and U :: W ⇔ v, which is what we needed to show. 2

6.3 Computations as Transition Sequences

So far, we have modelled evaluation as the construction of a deduction of the eval-
uation judgment. This is true for evaluation based on substitution in Section 2.3
and for evaluation based on environments in Section 6.1. In an abstract machine
(and, of course, in an actual machine) a more natural model for computation is a
sequence of states. In this section we will develop the CLS machine, an abstract
machine similar in scope to the SECD machine [Lan64]. The CLS machine still in-
terprets expressions, so the step from environment based evaluation to this abstract
machine does not involve any compilation. Instead, we flatten evaluation trees to
sequences of states that describe the computation. This flattening involves some
rather arbitrary decisions about which subcomputations should be performed first.
We linearize the evaluation deductions beginning with the deduction of the leftmost
premiss.

Throughout the remainder of this chapter, we will drop the prime (′) from the
expression constructors. This should not lead to any confusion, since we no longer
need to refer to the original expressions. Now consider the rule for evaluating pairs
as a simple example where an evaluation tree has two branches.

η ` F1 ↪→W1 η ` F2 ↪→W2
fev pair

η ` 〈F1, F2〉 ↪→ 〈W1,W2〉∗

An abstract machine would presumably start in a state where it is given the
environment η and the expression 〈F1, F2〉. The final state of the machine should
somehow indicate the final value 〈W1,W2〉∗. The computation naturally decomposes
into three phases: the first phase computes the value of F1 in environment η, the
second phase computes the value of F2 in environment η, and the third phase

6.3. COMPUTATIONS AS TRANSITION SEQUENCES 171

combines the two values to form a pair. These phases mean that we have to preserve
the environment η and also the expression F2 while we are computing the value of F1.
Similarly, we have to save the value W1 while computing the value of F2. A natural
data structure for saving components of a state is a stack. The considerations
above suggest three stacks: a stack Ξ of environments, a stack of expressions to be
evaluated, and a stack S of values. However, we also need to remember that, after
the evaluation of F2 we need to combine W1 and W2 into a pair. Thus, instead
of a stack of expression to be evaluated, we maintain a program which consists of
expressions and special instructions (such as: make a pair written as mkpair).

We will need more instructions later, but so far we have:

Instructions I ::= F | mkpair | . . .
Programs P ::= done | I&P

Environment Stacks Ξ ::= · | Ξ; η
Value Stacks S ::= · | S,W

State St ::= 〈Ξ, P, S〉

Note that value stacks are simply environments, so we will not formally distinguish
them from environments. The instructions of a program a sequenced with &; the
program done indicates that there are no further instructions, that is, computation
should stop.

A state consists of an environment stack Ξ, a program P and a value stack S,
written as 〈Ξ, P, S〉. We have single-step and multi-step transition judgments:

St =⇒ St ′ St goes to St ′ in one computation step

St
∗

=⇒ St ′ St goes to St ′ in zero or more steps

We define the transition judgment so that

〈(·; η), F & done , ·〉 ∗=⇒ 〈·, done, (·,W)〉

corresponds to the evaluation of F in environment η to value W . The free variables
of F are therefore bound in the innermost environment, and the value resulting
from evaluation is deposited on the top of the value stack, which starts out empty.
Global evaluation is expressed in the judgment

η ` F ∗
=⇒=⇒W F computes to W in environment η

which is defined by the single inference rule

〈(·; η), F & done , ·〉 ∗=⇒ 〈·, done, (·,W)〉
run.

η ` F ∗
=⇒=⇒ W

We prove in Theorem 6.19 that η ` F ∗
=⇒=⇒ W iff η ` F ↪→W . We cannot prove this

statement directly by induction (in either direction), since during a computation

172 CHAPTER 6. COMPILATION

situations arise where the environment stack consists of more than a single envi-
ronment, the remaining program is not done , etc. In one direction we generalize it
to

〈(Ξ; η), F &P, S〉 ∗
=⇒ 〈Ξ, P, (S,W)〉

if η ` F ↪→W . This is the subject of Lemma 6.16. A slightly modified form of the
converse is given in Lemma 6.18.

The transition rules and the remaining instructions can be developed system-
atically from the intuition provided above. First, we reconsider the evaluation of
pairing. The first rule decomposes the pair expression and saves the environment η
on the environment stack.

c pair :: 〈(Ξ; η), 〈F1, F2〉&P, S〉 =⇒ 〈(Ξ; η; η), F1 &F2 &mkpair &P, S〉

Here c pair labels the rule and can be thought of as the deduction of the given
transition judgment. The evaluation of F1, if it terminates, leads to a state

〈(Ξ; η), F2 &mkpair &P, (S,W1)〉,

and the further evaluation of F2 then leads to a state

〈Ξ,mkpair &P, (S,W1,W2)〉.

Thus, the mkpair instruction should cause the machine to create a pair from the
first two elements on the value stack and deposit the result again on the value stack.
That is, we need as another rule:

c mkpair :: 〈Ξ,mkpair &P, (S,W1,W2)〉 =⇒ 〈Ξ, P, (S, 〈W1,W2〉∗)〉.

We consider one other construct in detail: application. To evaluate an appli-
cation F1 F2 we first evaluate F1 and then we evaluate F2. If the value of F1 is a
closure, we have to bind its variable to the value of F2 and continue evaluation in
an extended environment. The instruction that unwraps the closure and extends
the environment is called apply .

c app :: 〈(Ξ; η), F1 F2 &P, S〉 =⇒ 〈(Ξ; η; η), F1 &F2 & apply &P, S〉
c apply :: 〈Ξ, apply &P, (S, {η′; ΛF ′1},W2)〉 =⇒ 〈(Ξ; (η′,W2)), F

′
1 &P, S〉

The rules for applying zero and successor are straightforward, but they necessitate
a new operator add1 to increment the first value on the stack.

c z :: 〈(Ξ; η), z&P, S〉 =⇒ 〈Ξ, P, (S, z∗)〉
c s :: 〈(Ξ; η), s F &P, S〉 =⇒ 〈(Ξ; η), F & add1 &P, S〉

c add1 :: 〈Ξ, add1 &P, (S,W)〉 =⇒ 〈Ξ, P, (S, s∗ W)〉

For expressions of the form case F1 F2 F3, we need to evaluate F1 and then evaluate
either F2 or F3, depending on the value of F1. This requires a new instruction,

6.3. COMPUTATIONS AS TRANSITION SEQUENCES 173

branch , which either goes to the next instructions or skips the next instruction.
In the latter case it also needs to bind a new variable in the environment to the
predecessor of the value of F1.

c case :: 〈(Ξ; η), case F1 F2 F3 &P, S〉
=⇒ 〈(Ξ; η; η), F1 & branch &F2 &F3 &P, S〉

c branch z :: 〈(Ξ; η), branch &F2 &F3 &P, (S, z∗)〉 =⇒ 〈(Ξ; η), F2 &P, S〉
c branch s :: 〈(Ξ; η), branch &F2 &F3 &P, (S, s∗ W)〉

=⇒ 〈(Ξ; (η,W)), F3 &P, S〉

Rules for fst and snd require new instructions to extract the first or second
element of the value on the top of the stack.

c fst :: 〈(Ξ; η), fst F &P, S〉 =⇒ 〈(Ξ; η), F & getfst &P, S〉
c getfst :: 〈Ξ, getfst &P, (S, 〈W1,W2〉∗)〉 =⇒ 〈Ξ, P, (S,W1)〉

c snd :: 〈(Ξ; η), snd F &P, S〉 =⇒ 〈(Ξ; η), F & getsnd &P, S〉
c getsnd :: 〈Ξ, getsnd &P, (S, 〈W1,W2〉∗)〉 =⇒ 〈Ξ, P, (S,W2)〉

In order to handle let val we introduce another new instruction bind , even
though it is not strictly necessary and could be simulated with other instructions
(see Exercise 6.10).

c let :: 〈(Ξ; η), let F1 in F2 &P, S〉 =⇒ 〈(Ξ; η; η), F1 & bind &F2 &P, S〉
c bind :: 〈(Ξ; η), bind &F2 &P, (S;W1)〉 =⇒ 〈(Ξ; (η,W1)), F2 &P, S〉

We leave the rules for recursion to Exercise 6.11. The rules for variables and
abstractions thus complete the specification of the single-step transition relation.

c 1 :: 〈(Ξ; (η,W)), 1 &P, S〉 =⇒ 〈Ξ, P, (S,W)〉
c ↑ :: 〈(Ξ; (η,W ′)), F↑&P, S〉 =⇒ 〈(Ξ; η), F &P, S〉

c lam :: 〈(Ξ; η),ΛF &P, S〉 =⇒ 〈Ξ, P, (S, {η; ΛF})〉

The set of instructions extracted from these rules is

Instructions I ::= F | add1 | branch | mkpair | getfst | getsnd | apply | bind .

We view each of the transition rules for the single-step transition judgment as
an axiom. Note that there are no other inference rules for this judgment. A partial
computation is defined as a multi-step transition. This is easily defined via the
following two inference rules.

id
St

∗
=⇒ St

St =⇒ St ′ St ′
∗

=⇒ St ′′
step

St
∗

=⇒ St ′′

This definition guarantees that the end state of one transition matches the beginning
state of the remaining transition sequence. Without the aid of dependent types we

174 CHAPTER 6. COMPILATION

would have to define a computation as a list states and ensure externally that the
end state of each transition matches the beginning state of the next. This use of
dependent types to express complex constraints is one of the reasons why simple
lists do not arise very frequently in Elf programming.

Deductions of the judgment St
∗

=⇒ St ′ have a very simple form: They all consist
of a sequence of single steps terminated by an application of the id rule. We will
follow standard practice and use a linear notation for sequences of steps:

St1 =⇒ St2 =⇒ · · · =⇒ Stn

Similarly, we will mix multi-step and single-step transitions in sequences, with the
obvious meaning. We write C1 ◦C2 for the result of appending computations C1 and
C2. This only makes sense if the final state of C1 is the same as the start state of
C2. The ◦ operator is associative (see Exercise 6.12).

Recall that a complete computation was defined as a sequence of transitions
from an initial state to a final state. The latter is characterized by the program
done , and empty environment stack, and a value stack containing exactly one value,
namely the result of the computation.

〈(·; η), F & done , ·〉 ∗=⇒ 〈·, done, (·,W)〉
run

η ` F ∗
=⇒=⇒ W

The representation of the abstract machine and the computation judgments
present no particular difficulties. We begin with the syntax.

instruction : type. %name instruction I.

program : type. %name program P.

envstack : type. %name envstack Ns.

state : type. %name state St.

% Instructions

ev : exp’ -> instruction.

add1 : instruction.

branch : instruction.

mkpair : instruction.

getfst : instruction.

getsnd : instruction.

apply : instruction.

bind : instruction.

% Programs

done : program.

& : instruction -> program -> program.

6.3. COMPUTATIONS AS TRANSITION SEQUENCES 175

%infix right 10 &.

% Environment stacks

emptys : envstack.

; : envstack -> env -> envstack.

%infix left 10 ;.

% States

st : envstack -> program -> env -> state.

The computation rules are also a straightforward transcription of the rules above.
The judgment St

∗
=⇒ St ′ is represented by a type St => St’ where => is a type

family indexed by two states and written in infix notation. We show only three
example rules.

=> : state -> state -> type. %name => R.

%infix none 10 =>.

%mode => +St -St’.

c_z : st (Ns ; N) (ev z’ & P) S => st Ns P (S , z*).

c_app : st (Ns ; N) (ev (app’ F1 F2) & P) S

=> st (Ns ; N ; N) (ev F1 & ev F2 & apply & P) S.

c_apply : st Ns (apply & P) (S , clo N’ (lam’ F1’) , W2)

=> st (Ns ; (N’ , W2)) (ev F1’ & P) S.

The multi-step transition is defined by the transcription of its two inference
rules. We write ~ in infix notation rather than step since it leads to a concise and
readable notation for sequences of computation steps.

=>* : state -> state -> type. %name =>* C.

%infix none 10 =>*.

% no mode---this is not operational.

id : St =>* St.

~ : St => St’

-> St’ =>* St’’

-> St =>* St’’.

%infix right 10 ~.

Complete computations appeal directly to the multi-step computation judgment.
We write ceval K F W for η ` F ∗

=⇒=⇒W .

176 CHAPTER 6. COMPILATION

ceval : env -> exp’ -> val -> type.

% no mode---this is not operational

run : st (emptys ; N) (ev F & done) (empty)

=>* st (emptys) (done) (empty , W)

-> ceval N F W.

While this representation is declaratively adequate it has a serious operational defect
when used for evaluation, that is, when η and F are given andW is to be determined.
The declaration for step (written as ~) solves the innermost subgoal first, that is

we reduce the goal of finding a computation C′′ :: St
∗

=⇒ St ′′ to finding a state St ′

and computation of C′ :: St ′
∗

=⇒ St ′′ and only then a single transition R :: St =⇒
St ′. This leads to non-termination, since the interpreter is trying to work its way
backwards through the space of possible computation sequences. Instead, we can
get linear, backtracking-free behavior if we first find the single step R :: St =⇒ St ′

and then the remainder of the computation C′ :: St ′
∗

=⇒ St ′′. Since there is exactly
one rule for any instruction I and id will apply only when the program P is done ,
finding a computation now becomes a deterministic process. Executable versions
of the last two judgments are given below. They differ from the one above only in
the order of the recursive calls and it is a simple matter to relate the two versions
formally.

>=>* : state -> state -> type.

%infix none 10 >=>*.

%mode >=>* +St -St’.

id< : St >=>* St.

<=< : St >=>* St’’

<- St => St’

<- St’ >=>* St’’.

%infix left 10 <=<.

>ceval : env -> exp’ -> val -> type.

%mode >ceval +N +F -W.

>run : >ceval N F W

<- st (emptys ; N) (ev F & done) (empty)

>=>* st (emptys) (done) (empty , W).

This example clearly illustrates that Elf should be thought of a uniform language in
which one can express specifications (such as the computations above) and imple-
mentations (the operational versions below), but that many specifications will not
be executable. This is generally the situation in logic programming languages.

6.3. COMPUTATIONS AS TRANSITION SEQUENCES 177

In the informal development it is clear (and not usually separately formulated
as a lemma) that computation sequences can be concatenated if the final state of
the first computation matches the initial state of the second computation. In the
formalization of the proofs below, we will need to explicitly implement a type family
that appends computation sequences. It cannot be formulated as a function, since
such a function would have to be recursive and is thus not definable in LF.

append : st Ns P S =>* st Ns’ P’ S’

-> st Ns’ P’ S’ =>* st Ns’’ P’’ S’’

-> st Ns P S =>* st Ns’’ P’’ S’’

-> type.

%mode append +C +C’ -C’’.

The defining clauses are left as Exercise 6.12.
We now return to the task of proving the correctness of the abstract machine.

The first lemma states the fundamental motivating property for this model of com-
putation.

Lemma 6.16 Let η be an environment, F an expression, and W a value such that
η ` F ↪→W . Then, for any environment stack Ξ, program P and stack S,

〈(Ξ; η), F &P, S〉 ∗
=⇒ 〈Ξ, P, (S,W)〉

Proof: By induction on the structure of D :: η ` F ↪→ W . We will construct a
deduction of C :: 〈(Ξ; η), F &P, S〉 ∗

=⇒ 〈Ξ, P, (S,W)〉. The proof is straightforward
and we show only two typical cases. The implementation in Elf takes the form of a
higher-level judgment subcomp that relates evaluations to computation sequences.

subcomp : feval N F W

-> st (Ns ; N) (ev F & P) S =>* st Ns P (S , W)

-> type.

%mode +{N:env} +{F:exp’} +{W:val} +{Ns:envstack} +{P:program} +{S:env}

+{D:feval N F W} -{C:st (Ns ; N) (ev F & P) S =>* st Ns P (S , W)}

subcomp D C.

Note that the mode declaration here is in the “full” form in order to express that the
implicitly quantified variables Ns, P, and S are input arguments rather than output
arguments. The system would have inferred the latter from the simpler declaration
%mode subcomp +D -C.

Case: D ends in an application of the rule fev z.

D = fev z.
η ` z ↪→ z∗

178 CHAPTER 6. COMPILATION

Then the single-step transition

〈(Ξ; η), z&P, S〉 ∗
=⇒ 〈Ξ, P, (S, z∗)〉

satisfies the requirements of the lemma. The clause corresponding to this case:

sc_z : subcomp (fev_z) (c_z ~ id).

Case: D ends in an application of the fev app rule.

D =

D1

η ` F1 ↪→ {η′; ΛF ′1}
D2

η ` F2 ↪→W2

D3

η′,W2 ` F ′1 ↪→W
fev app

η ` F1 F2 ↪→W

Then

〈(Ξ; η), F1 F2 &P, S〉
=⇒ 〈(Ξ; η; η), F1 &F2 & apply &P, S〉 By rule c app
∗

=⇒ 〈(Ξ; η), F2 & apply &P, (S, {η′; ΛF ′1})〉 By ind. hyp. on D1
∗

=⇒ 〈Ξ, apply &P, (S, {η′; ΛF ′1},W2)〉 By ind. hyp. on D2

=⇒ 〈(Ξ; (η′,W2)), F
′
1 &P, S〉 By rule c apply

∗
=⇒ 〈Ξ, P, (S,W)〉 By ind. hyp. on D3.

The implementation of this case requires the append family defined above.
Note how an appeal to the induction hypothesis is represented as a recursive
call.

sc_app : subcomp (fev_app D3 D2 D1) C

<- subcomp D1 C1

<- subcomp D2 C2

<- subcomp D3 C3

<- append (c_app ~ C1) C2 C’

<- append C’ (c_apply ~ C3) C.

2

The first direction of Theorem 6.19 is a special case of this lemma. The other
direction is more intricate. The basic problem is to extract a tree-structured evalua-
tion from a linear computation. We must then show that this extraction will always
succeed for complete computations. Note that it is obviously not possible to ex-
tract evaluations from arbitrary incomplete sequences of transitions of the abstract
machine.

6.3. COMPUTATIONS AS TRANSITION SEQUENCES 179

In order to write computation sequences more concisely, we introduce some
notation. Let R :: St =⇒ St ′ and C :: St ′

∗
=⇒ St ′′. Then we write

R ∼ C :: St =⇒ St ′′

for the computation which begins with R and then proceeds with C. Such a com-
putation exists by the step inference rule. This corresponds directly to the notation
in the Elf implementation.

For the proof of the central lemma of this section, we will need a new form
of induction often referred to as complete induction. During a proof by complete
induction we assume the induction hypothesis not only for the immediate premisses
of the last inference rule, but for all proper subderivations. Intuitively, this is
justified, since all proper subderivations are “smaller” than the given derivation.
For a more formal discussion of the complete induction principle for derivations see
Section 6.4. The judgment C < C′ (C is a proper subcomputation of C′) is defined
by the following inference rules.

sub imm
C < R ∼ C

C < C′
sub med

C < R ∼ C′

It is easy to see that the proper subcomputation relation is transitive.

Lemma 6.17 If C1 < C2 and C2 < C3 then C1 < C3.

Proof: By a simple induction (see Exercise 6.12). 2

The implementation of this ordering and the proof of transitivity are immediate.

< : (st Ns1 P1 S1) =>* (st Ns P S)

-> (st Ns2 P2 S2) =>* (st Ns P S)

-> type.

%infix none 8 <.

sub_imm : C < R ~ C.

sub_med : C < C’

-> C < R ~ C’.

The representation of the proof of transitivity is left to Exercise 6.12.
We are now prepared for the lemma that a complete computation with an appro-

priate initial state can be translated into an evaluation followed by another complete
computation.

Lemma 6.18 If

C :: 〈(Ξ, η), F &P, S〉 ∗
=⇒ 〈·, done, (·,W ′)〉

180 CHAPTER 6. COMPILATION

there exists a value W , an evaluation

D :: η ` F ↪→W,

and a computation

C′ :: 〈Ξ, P, (S,W)〉 ∗
=⇒ 〈·, done, (·,W ′)〉

such that C′ < C.

Proof: By complete induction on the C. We only show a few cases; the others
similar. We use the abbreviation final = 〈·, done, (·,W ′)〉. The representing type
family spl is indexed by three deductions: C, C′, and D. We do not explicitly
represent the derivation which shows that C′ < C since the Twelf system can check
this automatically using a %reduces declaration, placed after all rules for spl.

spl : (st (Ns ; N) (ev F & P) S) =>* (st emptys done (empty , W’))

-> feval N F W

-> (st Ns P (S , W)) =>* (st emptys done (empty , W’))

-> type.

%mode spl +C -D -C’.

... clauses for spl ...

%reduces C’ < C (spl C _ C’).

%terminates C (spl C _ _).

Now back to the proof.

Case: C begins with c z, that is, C = c z ∼ C1. Then W = z∗,

D =
fev z,

K ` z ↪→ z∗

and C′ = C1. Furthermore, C′ = C1 < c z ∼ C1 by rule sub imm. The
representation in Elf:

spl_z : spl (c_z ~ C1) (fev_z) C1.

Case: C begins with c app. Then C = c app ∼ C1 where

C1 :: 〈(Ξ; η; η), F1 &F2 & apply &P, S〉 ∗
=⇒ final .

By induction hypothesis on C1 there exists a W1, an evaluation

D1 :: η ` F1 ↪→W1

and a computation

C2 :: 〈(Ξ; η), F2 & apply &P, (S,W1)〉 ∗
=⇒ final

6.3. COMPUTATIONS AS TRANSITION SEQUENCES 181

such that C2 < C1. We can thus apply the induction hypothesis to C2 to obtain
a W2, an evaluation

D2 :: η ` F2 ↪→W2

and a computation

C3 :: 〈Ξ, apply &P, (S,W1,W2)〉
∗

=⇒ final

such that C3 < C2. By inversion, C3 = c apply ∼ C′3 and W1 = {η′; ΛF ′1} where

C′3 :: 〈(Ξ; (η′,W2)), F
′
1 &P, S〉 ∗

=⇒ final .

Then C′3 < C3 and by induction hypothesis on C′3 there is a value W3, an
evaluation

D3 :: η′,W2 ` F ′1 ↪→W3

and a compuation
C4 :: 〈Ξ, P, (S,W3)〉

∗
=⇒ final .

Now we let W = W3 and we construct D :: η ` F1 F2 ↪→W3 by an application
of the rule fev app to the premisses D1, D2, and D3. Furthermore we let C′ =
C4 and conclude by some elementary reasoning concerning the subcomputation
relation that C′ < C.
The representation of this subcase of this case requires three explicit appeals
to the transitivity of the subcomputation ordering. In order to make this at
all intelligible, we use the name C2<C1 (one identifier) for the derivation that
C2 < C1 and similarly for other such derivations.

spl_app : spl (c_app ~ C1)

(fev_app D3 D2 D1) C4

<- spl C1 D1 C2

<- spl C2 D2 (c_apply ~ C3’)

<- spl C3’ D3 C4.

2

Now we have all the essential lemmas to prove the main theorem.

Theorem 6.19 η ` F ↪→W is derivable iff η ` F ∗
=⇒=⇒ W is derivable.

Proof: By definition, η ` F ∗
=⇒=⇒ W iff there is a computation

C :: 〈(·; η), F & done , ·〉 ∗
=⇒ 〈·, done, (·,W)〉.

One direction follows immediately from Lemma 6.16: if η ` F ↪→W then

〈(Ξ; η), F &P, S〉 ∗
=⇒ 〈Ξ, P, (S,W)〉

for any Ξ, P , and S and in particular for Ξ = ·, P = done and S = ·. The
implementation of this direction in Elf:

182 CHAPTER 6. COMPILATION

cev_complete : feval N F W -> ceval N F W -> type.

%mode cev_complete +D -C.

cevc : cev_complete D (run C) <- subcomp D C.

%terminates [] (cev_complete D _).

For the other direction, assume there is a deduction C of the form shown above.
By Lemma 6.18 we know that there exist a W ′, an evaluation

D′ :: η ` F ↪→W ′

and a computation

C′ :: 〈·, done, (·,W ′)〉 ∗
=⇒ 〈·, done, (·,W)〉

such that C′ < C. Since there is no transition rule for the program done , C′ must
be id and W = W ′. Thus D = D′ fulfills the requirements of the theorem. This is
implemented as follows.

cls_sound : ceval N F W -> feval N F W -> type.

%mode cls_sound +C -D.

clss : cls_sound (run C) D <- spl C D (id).

%terminates [] (cls_sound C _).

2

6.4 Complete Induction over Computations

Here we briefly justify the principle of complete induction used in the proof of
Lemma 6.18. We repeat the definition of proper subcomputations and also define
a general subcomputation judgment which will be useful in the proof.

C < C′ C is a proper subcomputation of C′, and
C ≤ C′ C is a subcomputation of C′.

These judgments are defined via the following inference rules.

sub imm
C < R ∼ C

C < C′
sub med

C < R ∼ C′

C < C′
leq sub

C ≤ C′
leq eq

C ≤ C

We only need one simple lemma regarding the subcomputation judgment.

6.5. A CONTINUATION MACHINE 183

Lemma 6.20 If C ≤ C′ is derivable, then C < R ∼ C′ is derivable.

Proof: By analyzing the two possibilities for the deduction of the premiss and
constructing an immediate deduction for the conclusion in each case. 2

We call a property P of computations complete if it satisfies:

For every C, the assumption that P holds for all C′ < C implies that P
holds for C.

Theorem 6.21 (Principle of Complete Induction over Computations) If a property
P of computations is complete, then P holds for all computations.

Proof: We assume that P is complete and then prove by ordinary structural in-
duction that for every C and for every C′ ≤ C, P holds of C.

Case: C = id . By inversion, there is no C′ such that C′ < id . Thus P holds for all
C′ < id . Since P is complete, this implies that P holds for id .

Case: C = R ∼ C1. The induction hypothesis states that for every C′1 ≤ C1, P
holds of C′1. We have to show that for every C2 ≤ R ∼ C1, property P holds
of C2. By inversion, there are two subcases, depending on the evidence for
C2 ≤ R ∼ C1.

Subcase: C2 = R ∼ C1. The induction hypothesis and Lemma 6.20 yield
that for every C′1 < R ∼ C1, P holds of C1. Since P is complete, P must
thus hold for R ∼ C1 = C2.

Subcase: C2 < R ∼ C1. Then by inversion either C1 = C2 or C1 < C2. In
either case C2 ≤ C1 by one inference. Now we can apply the induction
hypothesis to conclude that P holds of C2.

2

6.5 A Continuation Machine

The natural semantics for Mini-ML presented in Chapter 2 is called a big-step
semantics, since its only judgment relates an expression to its final value—a “big
step”. There are a variety of properties of a programming language which are
difficult or impossible to express as properties of a big-step semantics. One of the
central ones is that “well-typed programs do not go wrong”. Type preservation,
as proved in Section 2.6, does not capture this property, since it presumes that we
are already given a complete evaluation of an expression e to a final value v and
then relates the types of e and v. This means that despite the type preservation
theorem, it is possible that an attempt to find a value of an expression e leads to an

184 CHAPTER 6. COMPILATION

intermediate expression such as fst z which is ill-typed and to which no evaluation
rule applies. Furthermore, a big-step semantics does not easily permit an analysis
of non-terminating computations.

An alternative style of language description is a small-step semantics. The main
judgment in a small-step operational semantics relates the state of an abstract
machine (which includes the expression to be evaluated) to an immediate successor
state. These small steps are chained together until a value is reached. This level of
description is usually more complicated than a natural semantics, since the current
state must embody enough information to determine the next and all remaining
computation steps up to the final answer. It is also committed to the order in
which subexpressions are evaluated and thus somewhat less abstract than a natural,
big-step semantics.

In this section we construct a machine directly from the original natural seman-
tics of Mini-ML in Section 2.3 (and not from the environment-based semantics in
Section 6.1). This illustrates the general technique of continuations to sequential-
ize computations. Another application of the technique at the level of expressions
(rather than computations) is given in Section ??.

Our goal now is define a small-step semantics. For this, we isolate an expression
e to be evaluated, and a continuation K which contains enough information to carry
out the rest of the evaluation necessary to compute the overall value. For example,
to evaluate a pair 〈e1, e2〉 we first compute the value of e1, remembering that the
next task will be the evaluation of e2, after which the two values have to be paired.
This also shows the need for intermediate instructions, such as “evaluate the second
element of a pair” or “combine two values into a pair”. One particular kind of
instruction, written as ev e, triggers the first step in the computation based on the
structure of e.

Because we always fully evaluate one expression before moving on to the next,
the continuation has the form of a stack. Because the result of evaluating the current
expression must be communicated to the continuation, each item on the stack is a
function from values to instructions. Finally, when we have computed a value, we
return it by applying the first item on the continuation stack. Thus the following
structure emerges, to be supplement by further auxiliary instructions as necessary.

Instructions i ::= ev e | return v | . . .
Continuations K ::= init | K; λx. i

Machine States S ::= K � i | answer v

Here, init is the initial continuation, indicating that nothing further remains to
be done. The machine state answer v represents the final value of a computation
sequence. Based on the general consideration, we have the following transitions of
the abstract machine.

S =⇒ S′ S goes to S′ in one computation step

6.5. A CONTINUATION MACHINE 185

st init
init � return v =⇒ answer v

st return
K; λx. i � return v =⇒ K � [v/x]i

Further rules arise from considering each expression constructor in turn, possibly
adding new special-purpose intermediate instructions. We will write the rules in the
form label :: S =⇒ S′ as a more concise alternative to the format used above. The
meaning, however, remains the same: each rules is an axiom defining the transition
judgment. First, the constructors:

st z :: K � ev z =⇒ K � return z
st s :: K � ev (s e) =⇒ K; λx. return (s x) � e

Second, the corresponding destructor:

st case :: K � ev (case e1 of z⇒ e2 | s x⇒ e3)
=⇒ K; λx1. case1 x1 of z⇒ e2 | s x⇒ e3 � ev e1

st case1 z :: K � case1 z of z⇒ e2 | s x⇒ e3 =⇒ K � ev e2

st case1 s :: K � case1 s v1 of z⇒ e2 | s x⇒ e3 =⇒ K � ev [v′1/x]e3

We can see that the case construct requires a new instruction of the form
case1 v1 of z⇒ e2 | s x⇒ e3. This is distinct from case e1 of z⇒ e2 | s x⇒ e3

in that the case subject is known to be a value. Without an explicit new construct,
computation could get into an infinite loop since every value is also an expression
which evaluates to itself. It should now be clear how pairs and projections are
computed; the new instructions are 〈v1, e2〉1, fst1, and snd1.

st pair :: K � ev 〈e1, e2〉 =⇒ K; λx1. 〈x1, e2〉1 � ev e1

st pair1 :: K � 〈v1, e2〉1 =⇒ K; λx1. return 〈v1, x2〉 � ev e2

st fst :: K � ev (fst e) =⇒ K; λx. fst1 x � ev e
st fst1 :: K � fst1 〈v1, v2〉 =⇒ K � return v1

st snd :: K � ev (snd e) =⇒ K; λx. snd1 x � ev e
st snd1 :: K � snd1 〈v1, v2〉 =⇒ K � return v2

Neither functions, nor definitions or recursion introduce any essentially new
ideas. We add two new forms of instructions, app1 and app2, for the intermediate
forms while evaluating applications.

st lam :: K � ev (lam x. e) =⇒ K � return lamx. e
st app :: K � ev (e1 e2) =⇒ K; λx1. app1 x1 e2 � ev e1

st app1 :: K � app1 v1 e2 =⇒ K; λx2. app2 v1 x2 � ev e2

st app2 :: K � app2 (lam x. e′1) v2 =⇒ K � ev ([v2/x]e
′
1)

st letv :: K � letval x = e1 in e2 =⇒ K; λx1. [x1/x]e2 � ev e1

st letn :: K � letname u = e1 in e2 =⇒ K � ev ([e1/x]e2)

st fix :: K � fix u. e =⇒ K � ev ([fix u. e/u]e)

186 CHAPTER 6. COMPILATION

The complete set of instructions as extracted from the transitions above:

Instructions i ::= ev e | return v
| case1 v1 of z⇒ e2 | s x⇒ e3 Natural numbers
| 〈v1, e2〉1 | fst1 v | snd1 v Pairs
| app1 v1 e2 | app2 v1 v2 Functions

The implementation of instructions, continuations, and machine states in Elf uses
infix operations to make continuations and states more readable.

% Machine Instructions

inst : type. %name inst I.

ev : exp -> inst.

return : exp -> inst.

case1 : exp -> exp -> (exp -> exp) -> inst.

pair1 : exp -> exp -> inst.

fst1 : exp -> inst.

snd1 : exp -> inst.

app1 : exp -> exp -> inst.

app2 : exp -> exp -> inst.

% Continuations

cont : type. %name cont K.

init : cont.

; : cont -> (exp -> inst) -> cont.

%infix left 8 ;.

% Continuation Machine States

state : type. %name state S.

: cont -> inst -> state.

answer : exp -> state.

%infix none 7 #.

The following declarations constitute a direct translation of the transition rules
above.

=> : state -> state -> type. %name => C.

%infix none 6 =>.

%mode => +S -S’.

6.5. A CONTINUATION MACHINE 187

% Natural Numbers

st_z : K # (ev z) => K # (return z).

st_s : K # (ev (s E’)) => (K ; [x’] return (s x’)) # (ev E’).

st_case : K # (ev (case E1 E2 E3)) => (K ; [x1] case1 x1 E2 E3) # (ev E1).

st_case1_z : K # (case1 (z) E2 E3) => K # (ev E2).

st_case1_s : K # (case1 (s V1’) E2 E3) => K # (ev (E3 V1’)).

% Pairs

st_pair : K # (ev (pair E1 E2)) => (K ; [x1] pair1 x1 E2) # (ev E1).

st_pair1 : K # (pair1 V1 E2) => (K ; [x2] return (pair V1 x2)) # (ev E2).

st_fst : K # (ev (fst E’)) => (K ; [x’] fst1 x’) # (ev E’).

st_fst1 : K # (fst1 (pair V1 V2)) => K # (return V1).

st_snd : K # (ev (snd E’)) => (K ; [x’] snd1 x’) # (ev E’).

st_snd1 : K # (snd1 (pair V1 V2)) => K # (return V2).

% Functions

st_lam : K # (ev (lam E’)) => K # (return (lam E’)).

st_app : K # (ev (app E1 E2)) => (K ; [x1] app1 x1 E2) # (ev E1).

st_app1 : K # (app1 V1 E2) => (K ; [x2] app2 V1 x2) # (ev E2).

st_app2 : K # (app2 (lam E1’) V2) => K # (ev (E1’ V2)).

% Definitions

st_letv : K # (ev (letv E1 E2)) => (K ; [x1] ev (E2 x1)) # (ev E1).

st_letn : K # (ev (letn E1 E2)) => K # (ev (E2 E1)).

% Recursion

st_fix : K # (ev (fix E’)) => K # (ev (E’ (fix E’))).

% Return Instructions

st_return : (K ; [x] I x) # (return V) => K # (I V).

st_init : (init) # (return V) => (answer V).

Multi-step computation sequences could be represented as lists of single step
transitions. However, we would like to use dependent types to guarantee that, in
a valid computation sequence, the result state of one transition matches the start
state of the next transition. This is difficult to accomplish using a generic type of
lists; instead we introduce specific instances of this type which are structurally just
like lists, but have strong internal validity conditions.

S
∗

=⇒ S′ S goes to S′ in zero or more steps

e
c
↪→ v e evaluates to v using the continuation machine

188 CHAPTER 6. COMPILATION

stop
S
∗

=⇒ S

S =⇒ S′ S′
∗

=⇒ S′′
step

S
∗

=⇒ S′′

init � ev e
∗

=⇒ answer v
cev

e
c
↪→ v

We would like the implementation to be operational, that is, queries of the
form ?- ceval peq V. should compute the value V of a given e. This means the
S =⇒ S′ should be the first subgoal and hence the second argument of the step
rule. In addition, we employ a visual trick to display computation sequences in a
readable format by representing the step rule as a left associative infix operator.

=>* : state -> state -> type. %name =>* C*.

%infix none 5 =>*.

%mode =>* +S -S’.

stop : S =>* S.

<< : S =>* S’’

<- S => S’

<- S’ =>* S’’.

%infix left 5 <<.

% Because of evaluation order, computation sequences are displayed

% in reverse, using "<<" as a left-associative infix operator.

ceval : exp -> exp -> type. %name ceval CE.

%mode ceval +E -V.

cev : ceval E V

<- (init) # (ev E) =>* (answer V).

We then get a reasonable display of the sequence of computation steps which
must be read from right to left.

?- C* : init # (ev (app (lam [x] x) z)) =>* answer V.

Solving...

V = z.

C* =

stop << st_init << st_z << st_app2 << st_return << st_z << st_app1

<< st_return << st_lam << st_app.

The overall task now is to prove that e ↪→ v if and only if e
c
↪→ v. In one

direction we have to find a translation from tree-structured derivations D :: e ↪→ v
to sequential computations C :: init � ev e

∗
=⇒ answer v. In the other direction

6.5. A CONTINUATION MACHINE 189

we have to find a way to chop a sequential computation into pieces which can be
reassembled into a tree-structured derivation.

We start with the easier of the two proofs. We assume that e ↪→ v and try to show

that e
c
↪→ v. This immediately reduces to showing that init � ev e

∗
=⇒ answer v.

This does not follow directly by induction, since subcomputations will neither start
from the initial computation nor return the final answer. If we generalize the claim
to state that for all continuations K we have that K � ev e

∗
=⇒ K � return v,

then it follows directly by induction, using some simple lemmas regarding the con-
catenation of computation sequences (see Exercise 6.17).

We can avoid explicit concatenation of computation sequences and obtain a more
direct proof (and more efficient program) if we introduce an accumulator argument.
This argument contains the remainder of the computation, starting from the state
K � return v. To the front of this given computation we add the computation
from K � ev e

∗
=⇒ K � return v, passing the resulting computation as the next

value of the accumulator argument. Translating this intuition to a logical statement
requires explicitly universally quantifying over the accumulator argument.

Lemma 6.22 For any closed expression e, value v and derivation D :: e ↪→ v, if
C′ :: K � return v

∗
=⇒ answer w for any K and w, then C :: K � ev e

∗
=⇒

answer w.

Proof: The proof proceeds by induction on the structure of D. Since the accumu-
lator argument must already hold the remainder of the overall computation upon
appeal to the induction hypothesis, we apply the induction hypothesis on the im-
mediate subderivations of D in right-to-left order.

The proof is implemented by a type family

ccp : eval E V

-> K # (return V) =>* (answer W)

-> K # (ev E) =>* (answer W)

-> type.

%mode ccp +D +C’ -C.

Operationally, the first argument is the induction argument, the second argument
the accumlator, and the last the output argument.

We only show a couple of cases in the proof; the others follow in a similar
manner.

Case:

D = ev lam
lam x. e1 ↪→ lam x. e1

C′ :: K � return lam x. e1
∗

=⇒ answer w Assumption
C :: K � ev(lam x. e1) =⇒ answer w By st lam followed by C′

190 CHAPTER 6. COMPILATION

In this case we have added a step st lam to a computation; in the implemen-
tation, this will be an application of the step rule for the S

∗
=⇒ S′ judgment,

which is written as << in infix notation. Recall that the reversal of the evalu-
ation order means that computations (visually) proceed from right to left.

ccp_lam : ccp (ev_lam) C’ (C’ << st_lam).

Case:

D =

D1

e1 ↪→ lam x. e′1

D2

e2 ↪→ v2

D3

[v2/x]e
′
1 ↪→ v

ev app
e1 e2 ↪→ v

C′ :: K � return v
∗

=⇒ answer w Assumption

C3 :: K � ev ([v2/x]e
′
1)

∗
=⇒ answer w By ind. hyp. on D3 and C′

C′2 :: K; λx2. app2 (lam x. e′1) x2 � return v2
∗

=⇒ answer w
By st return and st app2 followed by C3

C2 :: K; λx2. app2 (lam x. e′1) x2 � ev e2
∗

=⇒ answer w
By ind. hyp. on D2 and C′2

C′1 :: K; λx1. app1 x1 e2 � return lam x. e′1
∗

=⇒ answer w
By st return and st app1 followed by C2.

C1 :: K; λx1. app1 x1 e2 � ev e1
∗

=⇒ answer w By ind. hyp. on D1 and C′1
C :: K � ev (e1 e2)

∗
=⇒ answer w By st app followed by C1.

The implementation threads the accumulator argument, adding steps con-
cerned with application as in the proof above.

ccp_app : ccp (ev_app D3 D2 D1) C’ (C1 << st_app)

<- ccp D3 C’ C3

<- ccp D2 (C3 << st_app2 << st_return) C2

<- ccp D1 (C2 << st_app1 << st_return) C1.

2

From this, the completeness of the abstract machine follows directly.

Theorem 6.23 (Completeness of the Continuation Machine) For any closed ex-

pression e and value v, if e ↪→ v then e
c
↪→ v.

Proof: We use Lemma 6.22 with K = init, w = v, and C′ the computation with
st init as the only step, to conclude that there is a computation C :: init � ev e

∗
=⇒

answer v. Therefore, by rule cev, e
c
↪→ v.

The implementation is straightforward, using ccp, the implementation of the
main lemma above.

6.5. A CONTINUATION MACHINE 191

cpm_complete : eval E V -> ceval E V -> type.

%mode cpm_complete +D -C.

cpmcp : cpm_complete D (cev C)

<- ccp D (stop << st_init) C.

2

Now we turn our attention to the soundness of the continuation machine: when-
ever it produces a value v then the natural semantics can also produce the value v
from the same expression. This is more difficult to prove than completeness. The
reason is that in the completeness proof, every subderivation of D :: e ↪→ v can
inductively be translated to a sequence of computation steps, but not every se-
quence of computation steps corresponds to an evaluation. For example, the partial
computation

K � ev (e1 e2)
∗

=⇒ K; λx1. app1 x1 e2 � ev e1

represents only a fragment of an evaluation. In order to translate a computation
sequence we must ensure that it is sufficiently long. A simple way to accomplish this
is to require that the given computation goes all the way to a final answer. Thus, we
have a state K � ev e at the beginning of a computation sequence C to a final answer
w, there must be some initial segment of C′ which corresponds to an evaluation of e
to a value v, while the remaining computation goes from K � return v to the final
answer w. This can then be proved by induction.

Lemma 6.24 For any continuation K, closed expression e and value w, if C ::
K � ev e

∗
=⇒ answer w then there is a value v a derivation D :: e ↪→ v, and a

subcomputation C′ of C of the form K � return v
∗

=⇒ answer w.

Proof: By complete induction on the structure of C. Here complete induction, as
opposed to a simple structural induction, means that we can apply the induction
hypothesis to any subderivation of C, not just to the immediate subderivations.
It should be intuitively clear that this is a valid induction principle (see also Sec-
tion 6.4).

In the implementation we have chosen not to represent the evidence for the
assertion that C′ is a subderivation of C. This can be added, either directly to the
implementation or as a higher-level judgment (see Exercise ??). This information
is not required to execute the proof on specific computation sequences, although it
is critical for seeing that it always terminates.

csd : K # (ev E) =>* (answer W)

-> eval E V

-> K # (return V) =>* (answer W)

-> type.

%mode csd +C -D -C’.

192 CHAPTER 6. COMPILATION

We only show a few typical cases; the others follow similarly.

Case: The first step of C is st lam followed by C1 :: K � return lam x. e
∗

=⇒
answer w.

In this case we let D = ev lam and C′ = C1. The implementation (where step
is written as << in infix notation):

csd_lam : csd (C’ << st_lam) (ev_lam) C’.

Case: The first step of C is st app followed by C1 :: K; λx1. app1 x1 e2 � ev e1
∗

=⇒
answer w, where e = e1 e2.

D1 :: e1 ↪→ v1 for some v1 and

C′1 :: K; λx1. app1 x1 e2 � return v1
∗

=⇒ answer w By ind. hyp. on C1
C′′1 :: K � app1 v1 e2

∗
=⇒ answer w By inversion on C′1

C2 :: K; λx2. app2 v1 x2 � ev e2
∗

=⇒ answer w By inversion on C′′1
D2 :: e2 ↪→ v2 form some v2 and

C′2 :: K; λx2. app2 v1 x2 � return v2
∗

=⇒ answer w By ind. hyp. on C2
C′′2 :: K � app2 v1 v2

∗
=⇒ answer w By inversion on C′2

v1 = lam x. e′1 and

C3 :: K � ev ([v2/x]e
′
1)

∗
=⇒ answer w By inversion on C′′2

D3 :: [v2/x]e
′
1 ↪→ v for some v and

C′ :: K � return v
∗

=⇒ answer w By ind. hyp on C3
D :: e1 e2 ↪→ v By rule ev app from D1, D2, and D3.

The evaluation D and computation sequence C′ now satisfy the requirements
of the lemma. The appeals to the induction hypothesis are all legal, since
C > C1 > C′′1 > C2 > C′2 > C′′2 > C3 > C′, where > is the subcomputation
judgment. Each of the subcomputation judgments in this chain follows either
immediately, or by induction hypothesis.

The implementation:

csd_app : csd (C1 << st_app) (ev_app D3 D2 D1) C’

<- csd C1 D1 (C2 << st_app1 << st_return)

<- csd C2 D2 (C3 << st_app2 << st_return)

<- csd C3 D3 C’.

2

Once again, the main theorem follows directly from the lemma.

6.6. TYPE PRESERVATION AND PROGRESS 193

Theorem 6.25 (Soundness of the Continuation Machine) For any closed expres-

sion e and value v, if e
c
↪→ v then e ↪→ v.

Proof: By inversion, C :: init � ev e
∗

=⇒ answer v. By Lemma 6.24 there is a
derivation D :: e ↪→ v′ and C′ :: init � return v′

∗
=⇒ answer v for some v′. By

inversion on C′ we see that v = v′ and therefore D satisfies the requirements of the
theorem.

cpm_sound : ceval E V -> eval E V -> type.

%mode cpm_sound +C -D.

cpmsd : cpm_sound (cev C) D

<- csd C D (stop << st_init).

%terminates {} (cpm_sound C D).

2

6.6 Type Preservation and Progress

So far we have concentrated on operational aspects of the translation from a big-step
to a small-step semantics; now we turn to issues of typing. The first property is type
preservation—a reprise of the same property for the big-step semantics. But the
reformulation of the semantics also allows us to express new language properties,
still at a high level of abstraction. One of the most important ones is progress. It
states that in any valid abstract machine state we can have one of two situations:
either we have already computed the final answer of the program, or we can make
progress by taking a further step.

Type preservation and progress together express that well-typed programs can-
not go wrong, a phrase coined by Milner [Mil78]. In our setting, “going wrong”
corresponds to reaching a machine state in which no further transition rules appli-
cable. Note that type preservation for the big-step semantics does not express this,
since it only talks about completed evaluations, not about intermediate states. Of
course, even in the small-step semantics an expression can fail to have a value, but
from the progress theorem we know that this is only due to non-termination.

We begin by giving the typing rules for the continuation-passing machine. One
complication as compared to the typing rules for expressions is that certain machine
states only make sense when components of instructions are values. For example,
the instruction app2 v1 v2 requires both arguments to be values. If this restriction
is not enforced, the progress theorem clearly fails, because there is no transition for
a state K � app2 ((lam x. x) (lam y. y)) z even though the arguments to app2

are correctly typed. This introduces a further complication: since continuations

194 CHAPTER 6. COMPILATION

are composed of functions from values to instructions, we need to record that the
argument of the continuation is indeed a function. For this we introduce a new
context Υ, which is either empty or contains a simple hypothesis x Value. The
value judgment is appropriately generalized so that x Value . x Value.

Υ ::= · | x Value Continuation argument

Υ; ∆ . i : τ Instruction i has type τ in context ∆.
. K : τ ⇒ σ Continuation K maps values of type τ to answers of type σ
. S : σ State S has type σ

Typing for continuations keeps track of two types: the type of the value that
will be passed to it, and the type of the final answer it produces. States on the
other hand record only the type of final answer it may produce. The judgments for
continuations and state do not depend on a context because they never contain free
variables.

∆ . e : τ
vi ev

Υ; ∆ . ev e : τ

∆ . v : τ Υ . v Value
vi return

Υ; ∆ . return v : τ

∆ . v1 : nat ∆ . e2 : τ ∆, x:nat . e2 : τ Υ . v1 Value
vi case1

Υ; ∆ . (case1 v1 of z⇒ e2 | s x⇒ e3) : τ

∆ . v1 : τ1 ∆ . e2 : τ2 Υ . v1 Value
vi pair1

Υ; ∆ . 〈v1, e2〉1 : τ1 × τ2

∆ . v′ : τ1 × τ2 Υ . v′ Value
vi fst1

Υ; ∆ . fst1 v
′ : τ1

∆ . v′ : τ1 × τ2 Υ . v′ Value
vi snd1

Υ; ∆ . snd1 v
′ : τ2

∆ . v1 : τ2 → τ1 ∆ . e2 : τ2 Υ . v1 Value
vi app1

Υ; ∆ . app1 v1 e2 : τ1

∆ . v1 : τ2 → τ1 ∆ . v2 : τ2 Υ . v1 Value Υ . v2 Value
vi app2

Υ; ∆ . app2 v1 v2 : τ1

In the typing rules for continuations, we have to make sure that the parts of the
continuation are composed properly: the value returned by the last instruction of a
continuation matches the type accepted by the remaining continuation. The initial
continuation just returns its argument as the final answer and therefore has type
τ ⇒ τ .

6.6. TYPE PRESERVATION AND PROGRESS 195

vk init
. init : τ ⇒ τ

xValue; ·, x:τ . i : τ ′ . K : τ ′ ⇒ σ
vk ;

. K; λx. i : τ ⇒ σ

For a state we verify that the type of the instruction to be executed matches
the one expected by the continuation, and assign the type of the final answer to the
state.

·; · . i : τ . K : τ ⇒ σ
vs �

. (K � i) : σ

· . v : σ · . v Value
vs answer

. answer v : σ

The typing judgments for instructions, continuations, and states admit more
states as valid than can be reached from an initial state of the form init � ev e (see
Exercise 6.19). However, they are accurate enough to permit proof of preservation
and progress and is therefore appropriate for our purposes.

The implementation of the judgments in the logical framework is straightfor-
ward. The fact that we need at most one value variable is not explicitly represented.
Instead, we use the usual techniques for parametric and hypothetical judgments by
assuming value x for a new parameter x. The declarations below can be executed
in Elf in order to check the validity of instructions, continuations and states and
infer their most general types.

%%% Instructions

valid : inst -> tp -> type. %name valid VL.

%mode valid +I *T.

% Evaluation and return

vi_ev : valid (ev E) T

<- of E T.

vi_return : valid (return V) T

<- of V T

<- value V.

% Natural Numbers

vi_case1 : valid (case1 V1 E2 E3) T

<- of V1 nat

<- of E2 T

196 CHAPTER 6. COMPILATION

<- ({x:exp} of x nat -> of (E3 x) T)

<- value V1.

% Pairs

vi_pair1 : valid (pair1 V1 E2) (cross T1 T2)

<- of V1 T1

<- of E2 T2

<- value V1.

vi_fst1 : valid (fst1 V’) T1

<- of V’ (cross T1 T2)

<- value V’.

vi_snd1 : valid (snd1 V’) T2

<- of V’ (cross T1 T2)

<- value V’.

% Functions

vi_app1 : valid (app1 V1 E2) T1

<- of V1 (arrow T2 T1)

<- of E2 T2

<- value V1.

vi_app2 : valid (app2 V1 V2) T1

<- of V1 (arrow T2 T1)

<- of V2 T2

<- value V1

<- value V2.

%%% Continuations

validk : cont -> tp -> tp -> type. %name validk VK.

%mode validk +K *T *S.

vk_init : validk (init) T T.

vk_; : validk (K ; [x] I x) T S

<- ({x:exp} value x -> of x T -> valid (I x) T’)

<- validk K T’ S.

%%% States

valids : state -> tp -> type. %name valids VS.

vs_# : valids (K # I) S

<- valid I T

<- validk K T S.

vs_answer : valids (answer V) S

<- of V S

<- value V.

With this preparation, we can now prove preservation and progress. The proofs

6.6. TYPE PRESERVATION AND PROGRESS 197

are quite straightforward, but somewhat tedious.

Theorem 6.26 (One-Step Type Preservation) If . S : σ and S =⇒ S′ then . S′ :
σ.

Proof: By cases on the derivation of C :: S =⇒ S′, applying several levels of
inversion to the given typing derivation for S. The implementation is via a type
family

vps : valids S T -> S => S’ -> valids S’ T -> type.

%mode vps +VS +C -VS’.

that relates the three derivation involved in the theorem. We show only a few
representative cases; the full implementation can be found in the on-line course
material.

Case: C is st app:

K � ev (e1 e2) =⇒ K; λx1. app1 x1 e2 � ev e1.

. K � ev (e1 e2) : σ Assumption

. K : τ ⇒ σ and
·; · . ev (e1 e2) : τ for some τ By inversion
· . e1 e2 : τ By inversion
· . e1 : τ2 → τ and
· . e2 : τ2 for some τ2 By inversion
x1 Value; x1 : τ2 → τ . app1 x1 e2 : τ By rule (vi app1)
. (K; λx1. app1 x1 e2) : (τ2 → τ)⇒ σ By rule (vk ;)
. (K; λx1. app1 x1 e2) � ev e1 : σ By rule (vs �)

The inversion steps are represented by expanding the structure of the first
argument, obtaining access to the subderivations VK of . K : τ → σ, P2 of
· . e2 : τ2, and P1 of · . e1 : τ2 → τ . The needed derivation for S′ is readily
constructed from these variables.

vps_app : vps (vs_# VK (vi_ev (tp_app P2 P1))) (st_app)

(vs_# (vk_; VK ([x1] [q1:value x1]

[p1:of x1 (arrow T2 T1)]

vi_app1 q1 P2 p1))

(vi_ev P1)).

Case: C is st app1:

K � app1 v1 e2 =⇒ K; λx2. app2 v1 x2 � ev e2.

198 CHAPTER 6. COMPILATION

. K � app1 v1 e2 : σ Assumption

. K : τ ⇒ σ and
·; · . app1 v1 e2 : τ for some τ By inversion
· . v1 : τ2 → τ and
· . e2 : τ2 form some τ2 and
· . v1 Value By inversion
x2 Value; x2 : τ2 .. app2 v1 x2 : τ By rule (vi app2)
. (K; λx2. app1 v1 e2) : τ2 ⇒ σ By rule (vk ;)
. (K; λx1. app2 v1 x2) � ev e2 : σ By rule vs cpm

In the representation we decompose the first argument as before. This now
gives as also Q1 which is the derivation of v1 Value.

vps_app1 : vps (vs_# VK (vi_app1 Q1 P2 P1)) (st_app1)

(vs_# (vk_; VK ([x2] [q2:value x2] [p2:of x2 T2]

vi_app2 q2 Q1 p2 P1))

(vi_ev P2)).

Case: C is st app2:

K � app2 (lam x. e′1) v2 =⇒ K � ev ([v2/x]e
′
1).

. (K � app2 (lam x. e′1) v2) : σ Assumption

. K : τ1 ⇒ σ and
·; · . app2 (lam x. e′1) v2) : τ1 for some τ1 By inversion
· . (lam x. e′1) : τ2 → τ1 and
· . v2 : τ2 for some τ2 and
· . (lam x. e′1) Value and
· . v2 Value By inversion
x:τ2 . e

′
1 : τ1 By inversion

· . [v2/x]e
′
1 : τ1 By substitution property (2.4)

·; · . ev ([v2/x]e
′
1) : τ1 By rule (vi ev)

. K � ev ([v2/x]e
′
1) : σ By rule (vs cpm)

By applying inversion as above we obtained

P ′1 :: (x:τ2 . e
′
1 : τ1)

which is represented by the variable

P1’ : {x:exp} of x T2 -> of (E1’ x) T1.

6.6. TYPE PRESERVATION AND PROGRESS 199

The appeal to the substitution principle is implemented by applying this func-
tion to the representation of v2 and the typing derivation P2 :: (· . v2 : τ2).
Note that we do not need the derivation Q2 which is evidence that v2 is a
value.

vps_app2 : vps (vs_# VK (vi_app2 Q2 (val_lam) P2 (tp_lam P1’)))

(st_app2) (vs_# VK (vi_ev (P1’ V2 P2))).

2

The multi-step type preservation theorem is a direct consequence of the one-step
preservation.

Theorem 6.27 (Multi-Step Type Preservation) If . S : σ and S
∗

=⇒ S′ then
. S′ : σ

Proof: By straightforward induction on the structure of the derivation C∗ :: (S
∗

=⇒
S′). We only show the implementation.

vps* : valids S T -> S =>* S’ -> valids S’ T -> type.

%mode vps* +VS +C* -VS’.

vps*_stop : vps* VS (stop) VS.

vps*_<< : vps* VS (C2* << C1) VS2

<- vps VS C1 VS1

<- vps* VS1 C2* VS2.

2

Finally, we come to the progress theorem: we can make a transition from every
state that is not a final state. Recall that the only final states are of the form
answer v.

Theorem 6.28 (Progress) If . (K � i) : σ then there is a state S′ such that
K � i =⇒ S′.

Proof: We know by inversion that

. K : τ ⇒ σ and

. i : τ for some τ .

We apply case analysis on i. In each case we can either directly make a transition,
or we need to apply several inversions on an available typing or value derivation
until each subcase can be seen to be impossible or a transition rule applies. For a
return instruction, we also need to distinguish cases on the shape of K. We show
only a few cases.

200 CHAPTER 6. COMPILATION

Case: i = ev (e1 e2). Then st app applies.

Case: i = app1 v1 e2. Then st app1 applies.

Case: i = app2 v1 v2. Then

· . v1 Value and
· . v2 Value and
· . v1 : τ2 → τ and
· . v2 : τ2 By inversion

Now we distinguish subcases on · . v2 Value

Subcase: v1 = z. This is impossible, since there is no rule to conclude
· . z : τ2 → τ .

Subcase: v1 = s v′1. This is impossible, since there is no rule to conclude
· . s v′1 : τ2 → τ .

Subcase: v1 = 〈v′1, v′′1 〉. This is impossible, since there is not rule to conclude
· . 〈v′1, v′′1 〉 : τ2 → τ

Subcase: v1 = lamx. e′1. Then st app2 applies.

The implementation is very similar to progress, except that we don’t need to con-
struct the resulting typing derivation. Note that impossible cases are not repre-
sented. Also, for simplicity of implementation, we distinguish the cases on the
typing derivation rather than the instruction, which is possible since the typing
judgment is syntax-directed. We show only the three cases from above.

pgs : valids S T -> S => S’ -> type.

%mode pgs +VS -C.

pgs_app : pgs (vs_# VK (vi_ev (tp_app P2 P1))) (st_app).

pgs_app1 : pgs (vs_# VK (vi_app1 Q1 P2 P1)) (st_app1).

pgs_app2 : pgs (vs_# VK (vi_app2 Q2 (val_lam) P2 (tp_lam P1’)))

(st_app2).

Note that some applications of inversion may be redundant for the sake of unifor-
mity. For example, we could have replaced the last clause by

pgs_app2’ : pgs (vs_# VK (vi_app2 Q2 (val_lam) P2 P1))

(st_app2).

6.7. CONTEXTUAL SEMANTICS 201

Nonetheless, the inversion on the value derivation is necessary, and

pgs_app2’’ : pgs (vs_# VK (vi_app2 Q2 Q1 P2 P1))

(st_app2).

would be incorrect as a proof case because it is not apparent from the first argument
that st app2 indeed applies. 2

6.7 Contextual Semantics

[This section discusses a contextual semantics as an alternative small-
step machine to the CPM machine. This still has to be revised from an
older version.]

6.8 Exercises

Exercise 6.1 If we replace the rule ev app in the natural semantics of Mini-ML
(see Section 2.3) by

e1 ↪→ lam x. e′1 e2 ↪→ v2

u
x ↪→ v2

...
e′1 ↪→ v

ev app′x,u

e1 e2 ↪→ v

in order to avoid explicitly substituting v2 for x, something goes wrong. What
is it? Can you suggest a way to fix the problem which still employs hypothetical
judgments?

(Note: We assume that the third premiss of the modified rule is parametric in x
and hypothetical in u which is discharged as indicated. This implies that we assume
that x is not already free in any other hypothesis and that all labels for hypotheses
are distinct—so this is not the problem you are asked to detect.)

Exercise 6.2 Define the judgment W RealVal which restricts closures W to Λ-
abstractions. Prove that · ` F ↪→ W then W RealVal and represent this proof in
Elf.

Exercise 6.3 In this exercise we try to eliminate some of the non-determinism in
compilation.

1. Define a judgment F std which should be derivable if the de Bruijn expression
F is in the standard form in which the ↑ operator is not applied to applications
or abstractions.

202 CHAPTER 6. COMPILATION

2. Rewrite the translation from ordinary expressions e such that only standard
forms can be related to any expression e.

3. Prove the property in item 2.

4. Implement the judgments in items 1, 2, and the proof in item 3.

Exercise 6.4 Restrict yourself to the fragment of the language with variables, ab-
straction, and application, that is,

F ::= 1 | F↑ | ΛF | F1 F2

1. Define a judgment F Closed that is derivable iff the de Bruijn expression F is
closed, that is, has no free variables at the object level.

2. Define a judgment for conversion of de Bruijn expressions F to standard form
(as in Exercise 6.3, item 1) in a way that preserves meaning (as given by its
interpretation as an ordinary expression e).

3. Prove that, under appropriate assumptions, this conversion results in a de
Bruijn expression in standard form equivalent to the original expression.

4. Implement the judgments and correctness proofs in Elf.

Exercise 6.5 Restrict yourself to the same fragment as in Exercise 6.4 and define
the operation of substitution as a judgment subst F1 F2 F . It should be a conse-
quence of your definition that if ΛF1 represents lam x. e1, F2 represents e2, and
subst F1 F2 F is derivable then F should represent [e2/x]e1. Furthermore, such an
F should always exist if F1 and F2 are as indicated. With appropriate assumptions
about free variables or indices (see Exercise 6.4) prove these properties, thereby
establishing the correctness of your implementation of substitution.

Exercise 6.6 Write out the informal proof of Theorem 6.7.

Exercise 6.7 Prove Theorem 6.8 by appropriately generalizing Lemma 6.2.

Exercise 6.8 Standard ML [MTH90] and many other formulations do not con-
tain a letname construct. Disregarding problems of polymorphic typing for the
moment, it is quite simple to simulate letname with let val operationally using
so-called thunks. The idea is that we can prohibit the evaluation of an arbitrary
expression by wrapping it in a vacuous lam-abstraction. Evaluation can be forced
by applying the function to some irrelevant value (we write z, most presentations
use a unit element). That is, instead of

l = letname x = e1 in e2

6.8. EXERCISES 203

we write
l′ = let val x′ = lam y. e1 in [x′ z/x]e2

where y is a new variable not free in e1.

1. Show a counterexample to the conjecture “If l is closed, l ↪→ v, and l′ ↪→ v′

then v = v′ (modulo renaming of bound variables)”.

2. Show a counterexample to the conjecture “. l : τ iff . l′ : τ”.

3. Define an appropriate congruence e ∼= e′ such that l ∼= l′ and if e ∼= e′, e ↪→ v
and e′ ↪→ v′ then v ∼= v′.

4. Prove the properties in item 3.

5. Prove that if the values v and v′ are natural numbers, then v ∼= v′ iff v = v′.

We need a property such as the last one to make sure that the congruence we define
does not identify all expressions. It is a special case of a so-called observational
equivalence (see ??).

Exercise 6.9 The rules for evaluation in Section 6.2 have the drawback that look-
ing up a variable in an environment and evaluation are mutually recursive, since
the environment contains unevaluated expressions. Such expressions may be added
to the environment during evaluation of a letname or fix construct. In the defi-
nition of Standard ML [MTH90] this problem is avoided by disallowing let name
(see Exercise 6.8) and by syntactically restricting occurrences of the fix construct.
When translated into our setting, this restriction states that all occurrences of fix-
point expressions must be of the form fix x. lam y. e. Then we can dispense with
the environment constructor + and instead introduce a constructor ∗ that builds a
recursive environment. More precisely, we have

Environments η ::= · | η,W | η ∗ F

The evaluation rules fev 1+, fev ↑+, and fev fix on page 161 are replaced by

fev fix∗
K ` fix′ F ↪→ {K ∗ F ;F}

fev 1∗
K ∗ F ` 1 ↪→ {K ∗ F ;F}

K ` F ↪→W
fev ↑∗

K ∗ F ′ ` F↑ ↪→W

204 CHAPTER 6. COMPILATION

1. Implement this modified evaluation judgment in Elf.

2. Prove that under the restriction that all occurrences of fix′ in de Bruijn ex-
pressions have the form fix′ ΛF for some F , the two sets of rules define an
equivalent operational semantics. Take care to give a precise definition of the
notion of equivalence you are considering and explain why it is appropriate.

3. Represent the equivalence proof in Elf.

4. Exhibit a counterexample which shows that some restriction on fixpoint ex-
pressions (as, for example, the one given above) is necessary in order to pre-
serve equivalence.

5. Under the syntactic restriction from above we can also formulate a semantics
which requires no new constructor for environments by forming closures over
fixpoint expressions. Then we need to add another rule for application of
an expression which evaluates to a closure over a fixpoint expression. Write
out the rules and prove its equivalence to either the system above or the
original evaluation judgment for de Bruijn expressions (under the appropriate
restriction).

Exercise 6.10 Show how the effect of the bind instruction can be simulated in the
CLS machine using the other instructions. Sketch the correctness proof for this
simulation.

Exercise 6.11 Complete the presentation of the CLS machine by adding recursion.
In particular

1. Complete the computation rules on page 173.

2. Add appropriate cases to the proofs of Lemmas 6.16, and 6.18.

Exercise 6.12 Prove the following carefully.

1. The concatenation operation “◦” on computations is associative.

2. The subcomputation relation “<” is transitive (Lemma 6.17).

Show the implementation of your proofs as type families in Elf.

Exercise 6.13 The machine instructions from Section 6.3 can simply quote ex-
pressions in de Bruijn form and consider them as instructions. As a next step in
the (abstract) compilation process, we can convert the expressions to lower-level
code which simulates the effect of instructions on the environment and value stacks
in smaller steps.

1. Design an appropriate language of operations.

6.8. EXERCISES 205

2. Specify and implement a compiler from expressions to code.

3. Prove the correctness of this step of compilation.

4. Implement your correctness proof in Elf.

Exercise 6.14 Types play an important role in compilation, which is not reflected
in the some of the development of this chapter. Ideally, we would like to take
advantage of type information as much as possible in order to produce more compact
and more efficient code. This is most easily achieved if the type information is
embedded directly in expressions (see Section ??), but at the very least, we would
expect that types can be assigned to intermediate expressions in the compiler.

1. Define typing judgments for de Bruijn expressions, environments, and values
for the language of Section 6.2. You may assume that values are always closed.

2. Prove type preservation for your typing judgment and the operational seman-
tics for de Bruijn expressions.

3. Prove type preservation under compilation, that is, well-typed Mini-ML ex-
pressions are mapped to well-typed de Bruijn expressions under the translation
of Section 6.2.

4. What is the converse of type preservation under compilation. Does your typing
judgment satisfy it?

5. Implement the judgments above in Elf.

6. Implement the proofs above in Elf.

Exercise 6.15 As in Exercise 6.14:

1. Define a typing judgment for evaluation contexts. It should only hold for valid
evaluation contexts.

2. Prove that splitting a well-typed expression which is not a value always suc-
ceeds and produces a unique context and redex.

3. Prove that splitting a well-typed expression results in a valid evaluation con-
text and valid redex.

4. Prove the correctness of contextual evaluation with respect to the natural
semantics for Mini-ML.

5. Implement the judgments above in Elf. Evaluation contexts should be rep-
resented as functions from expressions to expressions satisfying an additional
judgment.

206 CHAPTER 6. COMPILATION

6. Implement the proofs above in Elf.

Exercise 6.16 Show that the purely expression-based natural semantics of Sec-
tion 2.3 is equivalent to the one based on a separation between expressions and
values in Section 6.5. Implement your proof, including all necessary lemmas, in Elf.

Exercise 6.17 Carry out the alternative proof of completeness of the continuation
machine sketched on page 189. Implement the proof and all necessary lemmas in
Elf.

Exercise 6.18 Do the equivalence proof in Lemma 6.22 and the alternative in Ex-
ercise 6.17 define the same relation between derivations? If so, exhibit the bijection
in the form of a higher-level judgment relating the Elf implementations. Be careful
to write out necessary lemmas regarding concatenation. You may restrict yourself
to functional abstraction, application, and the necessary computation rules.

Exercise 6.19 Not every valid state of the CPM machine (according to the typing
judgments in Section 6.6) can be reached by a computation starting from some
initial state of the form init � ev e where · ` e : τ .

1. Exhibit a valid, but unreachable state.

2. Modify the validity judgments so that every valid machine state can in fact
be reached from some initial state.

3. Prove this property.

4. Implement your proof in Elf.

Bibliography

[ACCL91] Mart́ın Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques
Lévy. Explicit substitutions. Journal of Functional Programming,
1(4):375–416, October 1991.

[AINP88] Peter B. Andrews, Sunil Issar, Daniel Nesmith, and Frank Pfenning.
The TPS theorem proving system. In Ewing Lusk and Russ Overbeek,
editors, 9th International Conference on Automated Deduction, pages
760–761, Argonne, Illinois, May 1988. Springer-Verlag LNCS 310. Sys-
tem abstract.

[All75] William Allingham. In Fairy Land. Longmans, Green, and Co., London,
England, 1875.

[CCM87] Guy Cousineau, Pierre-Louis Curien, and Michel Mauny. The categori-
cal abstract machine. Science of Computer Programming, 8, May 1987.

[CDDK86] Dominique Clément, Joëlle Despeyroux, Thierry Despeyroux, and Gilles
Kahn. A simple applicative language: Mini-ML. In Proceedings of the
1986 Conference on LISP and Functional Programming, pages 13–27.
ACM Press, 1986.

[CF58] H. B. Curry and R. Feys. Combinatory Logic. North-Holland, Amster-
dam, 1958.

[Chu32] A. Church. A set of postulates for the foundation of logic I. Annals of
Mathematics, 33:346–366, 1932.

[Chu33] A. Church. A set of postulates for the foundation of logic II. Annals of
Mathematics, 34:839–864, 1933.

[Chu40] Alonzo Church. A formulation of the simple theory of types. Journal
of Symbolic Logic, 5:56–68, 1940.

[Chu41] Alonzo Church. The Calculi of Lambda-Conversion. Princeton Univer-
sity Press, Princeton, New Jersey, 1941.

207

208 BIBLIOGRAPHY

[Coq91] Thierry Coquand. An algorithm for testing conversion in type theory.
In Gérard Huet and Gordon Plotkin, editors, Logical Frameworks, pages
255–279. Cambridge University Press, 1991.

[Cur34] H. B. Curry. Functionality in combinatory logic. Proceedings of the
National Academy of Sciences, U.S.A., 20:584–590, 1934.

[dB68] N.G. de Bruijn. The mathematical language AUTOMATH, its usage,
and some of its extensions. In M. Laudet, editor, Proceedings of the Sym-
posium on Automatic Demonstration, pages 29–61, Versailles, France,
December 1968. Springer-Verlag LNM 125.

[dB72] N. G. de Bruijn. Lambda-calculus notation with nameless dummies: a
tool for automatic formula manipulation with application to the Church-
Rosser theorem. Indag. Math., 34(5):381–392, 1972.

[DFH+93] Gilles Dowek, Amy Felty, Hugo Herbelin, Gérard Huet, Chet Murthy,
Catherine Parent, Christine Paulin-Mohring, and Benjamin Werner.
The Coq proof assistant user’s guide. Rapport Techniques 154, INRIA,
Rocquencourt, France, 1993. Version 5.8.

[DM82] Luis Damas and Robin Milner. Principal type schemes for functional
programs. In Conference Record of the 9th ACM Symposium on Princi-
ples of Programming Languages (POPL’82), pages 207–212. ACM Press,
1982.

[Dow93] Gilles Dowek. The undecidability of typability in the lambda-pi-calculus.
In M. Bezem and J.F. Groote, editors, Proceedings of the International
Conference on Typed Lambda Calculi and Applications, pages 139–145,
Utrecht, The Netherlands, March 1993. Springer-Verlag LNCS 664.

[DP91] Scott Dietzen and Frank Pfenning. A declarative alternative to assert in
logic programming. In Vijay Saraswat and Kazunori Ueda, editors, In-
ternational Logic Programming Symposium, pages 372–386. MIT Press,
October 1991.

[Ell89] Conal Elliott. Higher-order unification with dependent types. In N. Der-
showitz, editor, Rewriting Techniques and Applications, pages 121–136,
Chapel Hill, North Carolina, April 1989. Springer-Verlag LNCS 355.

[Ell90] Conal M. Elliott. Extensions and Applications of Higher-Order Unifi-
cation. PhD thesis, School of Computer Science, Carnegie Mellon Uni-
versity, May 1990. Available as Technical Report CMU-CS-90-134.

BIBLIOGRAPHY 209

[FP91] Tim Freeman and Frank Pfenning. Refinement types for ML. In Pro-
ceedings of the SIGPLAN ’91 Symposium on Language Design and Im-
plementation, pages 268–277, Toronto, Ontario, June 1991. ACM Press.

[Gar92] Philippa Gardner. Representing Logics in Type Theory. PhD thesis,
University of Edinburgh, July 1992. Available as Technical Report CST-
93-92.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathe-
matische Zeitschrift, 39:176–210, 405–431, 1935. English translation in
M. E. Szabo, editor, The Collected Papers of Gerhard Gentzen, pages
68–131, North-Holland, 1969.

[Geu92] Herman Geuvers. The Church-Rosser property for βη-reduction in typed
λ-calculi. In A. Scedrov, editor, Seventh Annual IEEE Symposium on
Logic in Computer Science, pages 453–460, Santa Cruz, California, June
1992.

[Gol81] Warren D. Goldfarb. The undecidability of the second-order unification
problem. Theoretical Computer Science, 13:225–230, 1981.

[GS84] Ferenc Gécseg and Magnus Steinby. Tree Automata. Akadémiai Kiadó,
Budapest, 1984.

[Gun92] Carl A. Gunter. Semantics of Programming Languages. MIT Press,
Cambridge, Massachusetts, 1992.

[Han91] John J. Hannan. Investigating a Proof-Theoretic Meta-Language for
Functional Programs. PhD thesis, University of Pennsylvania, January
1991. Available as Technical Report MS-CIS-91-09.

[Han93] John Hannan. Extended natural semantics. Journal of Functional Pro-
gramming, 3(2):123–152, April 1993.

[Har90] Robert Harper. Systems of polymorphic type assignment in LF. Tech-
nical Report CMU-CS-90-144, Carnegie Mellon University, Pittsburgh,
Pennsylvania, June 1990.

[HB34] David Hilbert and Paul Bernays. Grundlagen der Mathematik. Springer-
Verlag, Berlin, 1934.

[Her30] Jacques Herbrand. Recherches sur la théorie de la démonstration.
Travaux de la Société des Sciences et de Lettres de Varsovic, 33, 1930.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for
defining logics. Journal of the Association for Computing Machinery,
40(1):143–184, January 1993.

210 BIBLIOGRAPHY

[HM89] John Hannan and Dale Miller. A meta-logic for functional programming.
In H. Abramson and M. Rogers, editors, Meta-Programming in Logic
Programming, chapter 24, pages 453–476. MIT Press, 1989.

[HM90] John Hannan and Dale Miller. From operational semantics to abstract
machines: Preliminary results. In M. Wand, editor, Proceedings of
the 1990 ACM Conference on Lisp and Functional Programming, pages
323–332, Nice, France, 1990.

[How80] W. A. Howard. The formulae-as-types notion of construction. In J. P.
Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on Combina-
tory Logic, Lambda Calculus and Formalism, pages 479–490. Academic
Press, 1980. Hitherto unpublished note of 1969, rearranged, corrected,
and annotated by Howard.

[HP92] John Hannan and Frank Pfenning. Compiler verification in LF. In
Andre Scedrov, editor, Seventh Annual IEEE Symposium on Logic in
Computer Science, pages 407–418, Santa Cruz, California, June 1992.

[HP00] Robert Harper and Frank Pfenning. On equivalence and canonical forms
in the LF type theory. Technical Report CMU-CS-00-148, Department
of Computer Science, Carnegie Mellon University, July 2000.

[Hue73] Gérard Huet. The undecidability of unification in third order logic.
Information and Control, 22(3):257–267, 1973.

[Hue75] Gérard Huet. A unification algorithm for typed λ-calculus. Theoretical
Computer Science, 1:27–57, 1975.

[JL87] Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In
Proceedings of the Fourteenth Annual ACM Symposium on Principles
of Programming Languages, pages 111–119, Munich, Germany, January
1987. ACM Press.

[Kah87] Gilles Kahn. Natural semantics. In Proceedings of the Symposium on
Theoretical Aspects of Computer Science, pages 22–39. Springer-Verlag
LNCS 247, 1987.

[Lan64] P. J. Landin. The mechanical evaluation of expressions. Computer
Journal, 6:308–320, 1964.

[Lia95] Chuck Liang. Object-Level Substitutions, Unification and Generalization
in Meta Logic. PhD thesis, University of Pennsylvania, December 1995.

[Mai92] H.G. Mairson. Quantifier elimination and parametric polymorphism in
programming languages. Journal of Functional Programming, 2(2):213–
226, April 1992.

BIBLIOGRAPHY 211

[Mil78] Robin Milner. A theory of type polymorphism in programming. Journal
Of Computer And System Sciences, 17:348–375, August 1978.

[Mil91] Dale Miller. A logic programming language with lambda-abstraction,
function variables, and simple unification. Journal of Logic and Com-
putation, 1(4):497–536, 1991.

[ML85] Per Martin-Löf. On the meanings of the logical constants and the jus-
tifications of the logical laws. Technical Report 2, Scuola di Specializ-
zazione in Logica Matematica, Dipartimento di Matematica, Università
di Siena, 1985.

[ML96] Per Martin-Löf. On the meanings of the logical constants and the jus-
tifications of the logical laws. Nordic Journal of Philosophical Logic,
1(1):11–60, 1996.

[MNPS91] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov.
Uniform proofs as a foundation for logic programming. Annals of Pure
and Applied Logic, 51:125–157, 1991.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Stan-
dard ML. MIT Press, Cambridge, Massachusetts, 1990.

[New65] Allen Newell. Limitations of the current stock of ideas about problem
solving. In A. Kent and O. E. Taulbee, editors, Electronic Information
Handling, pages 195–208, Washington, D.C., 1965. Spartan Books.

[NGdV94] R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer, editors. Selected Pa-
pers on Automath, volume 133 of Studies in Logic and the Foundations
of Mathematics. North-Holland, 1994.

[NM98] Gopalan Nadathur and Dale Miller. Higher-order logic programming.
In D.M. Gabbay, C.J. Hogger, and J.A. Robinson, editors, Handbook
of Logic in Artificial Intelligence and Logic Programming, volume 5,
chapter 8. Oxford University Press, 1998.

[NM99] Gopalan Nadathur and Dustin J. Mitchell. System description:
Teyjus—a compiler and abstract machine based implementation of
lambda Prolog. In H. Ganzinger, editor, Proceedings of the 16th Interna-
tional Conference on Automated Deduction (CADE-16), pages 287–291,
Trento, Italy, July 1999. Springer-Verlag LNCS.

[Pau86] Lawrence C. Paulson. Natural deduction as higher-order resolution.
Journal of Logic Programming, 3:237–258, 1986.

212 BIBLIOGRAPHY

[Pau94] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. Springer-
Verlag LNCS 828, 1994.

[Pfe91a] Frank Pfenning. Logic programming in the LF logical framework. In
Gérard Huet and Gordon Plotkin, editors, Logical Frameworks, pages
149–181. Cambridge University Press, 1991.

[Pfe91b] Frank Pfenning. Unification and anti-unification in the Calculus of Con-
structions. In Sixth Annual IEEE Symposium on Logic in Computer
Science, pages 74–85, Amsterdam, The Netherlands, July 1991.

[Pfe92] Frank Pfenning, editor. Types in Logic Programming. MIT Press, Cam-
bridge, Massachusetts, 1992.

[Pfe93] Frank Pfenning. Refinement types for logical frameworks. In Herman
Geuvers, editor, Informal Proceedings of the Workshop on Types for
Proofs and Programs, pages 285–299, Nijmegen, The Netherlands, May
1993.

[Pfe94] Frank Pfenning. Elf: A meta-language for deductive systems. In
A. Bundy, editor, Proceedings of the 12th International Conference
on Automated Deduction, pages 811–815, Nancy, France, June 1994.
Springer-Verlag LNAI 814. System abstract.

[Plo75] G. D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoret-
ical Computer Science, 1:125–159, 1975.

[Plo77] G. D. Plotkin. LCF considered as a programming language. Theoretical
Computer Science, 5(3):223–255, 1977.

[Plo81] Gordon D. Plotkin. A structural approach to operational seman-
tics. Technical Report DAIMI FN-19, Computer Science Department,
Aarhus University, Aarhus, Denmark, September 1981.

[PM93] Christine Paulin-Mohring. Inductive definitions in the system Coq:
Rules and properties. In M. Bezem and J.F. Groote, editors, Pro-
ceedings of the International Conference on Typed Lambda Calculi and
Applications, pages 328–345, Utrecht, The Netherlands, March 1993.
Springer-Verlag LNCS 664.

[Pra65] Dag Prawitz. Natural Deduction. Almquist & Wiksell, Stockholm, 1965.

[PS99] Frank Pfenning and Carsten Schürmann. System description: Twelf —
a meta-logical framework for deductive systems. In H. Ganzinger, edi-
tor, Proceedings of the 16th International Conference on Automated De-
duction (CADE-16), pages 202–206, Trento, Italy, July 1999. Springer-
Verlag LNAI 1632.

BIBLIOGRAPHY 213

[PW90] David Pym and Lincoln Wallen. Investigations into proof-search in
a system of first-order dependent function types. In M.E. Stickel, edi-
tor, Proceedings of the 10th International Conference on Automated De-
duction, pages 236–250, Kaiserslautern, Germany, July 1990. Springer-
Verlag LNCS 449.

[PW91] David Pym and Lincoln A. Wallen. Proof search in the λΠ-calculus. In
Gérard Huet and Gordon Plotkin, editors, Logical Frameworks, pages
309–340. Cambridge University Press, 1991.

[Pym90] David Pym. Proofs, Search and Computation in General Logic. PhD
thesis, University of Edinburgh, 1990. Available as CST-69-90, also
published as ECS-LFCS-90-125.

[Pym92] David Pym. A unification algorithm for the λΠ-calculus. International
Journal of Foundations of Computer Science, 3(3):333–378, September
1992.

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution prin-
ciple. Journal of the ACM, 12(1):23–41, January 1965.

[RP96] Ekkehard Rohwedder and Frank Pfenning. Mode and termination check-
ing for higher-order logic programs. In Hanne Riis Nielson, editor, Pro-
ceedings of the European Symposium on Programming, pages 296–310,
Linköping, Sweden, April 1996. Springer-Verlag LNCS 1058.

[Sal90] Anne Salvesen. The Church-Rosser theorem for LF with βη-reduction.
Unpublished notes to a talk given at the First Workshop on Logical
Frameworks in Antibes, France, May 1990.

[Sch00] Carsten Schürmann. Automating the Meta Theory of Deductive Sys-
tems. PhD thesis, Department of Computer Science, Carnegie Mellon
University, August 2000. Available as Technical Report CMU-CS-00-
146.

[SH84] Peter Schroeder-Heister. A natural extension of natural deduction. The
Journal of Symbolic Logic, 49(4):1284–1300, December 1984.

[Twe98] Twelf home page. Available at http://www.cs.cmu.edu/~twelf, 1998.

