15-851 COMPUTATION AND DEDUCTION

MODEL SOLUTION OF ASSIGNMENT 1 BRIGITTE PIENTKA
January 31, 2001

Exercise 2.1: Write Mini-ML programs for multiplication, exponentiation, subtraction, and a function that returns a pair of (integer) quotient and remainder of two natural numbers.

Solution:

$$
\begin{aligned}
& a d d=\text { fix } f . \operatorname{lam} x \text {. lam } y . \text { case } x \text { of } \mathbf{z} \Rightarrow y \mid \mathbf{s} x^{\prime} \Rightarrow \mathbf{s}\left(f x^{\prime} y\right) \\
& \text { sub }=\text { fix } f \text {. lam } x \text {. } \operatorname{lam} y \text {. } \\
& \text { case } x \text { of } \mathbf{z} \Rightarrow \mathbf{z} \\
& \mid \mathbf{s} x^{\prime} \Rightarrow \text { case } y \text { of } \mathbf{z} \Rightarrow x \mid \mathbf{s} y^{\prime} \Rightarrow f x^{\prime} y^{\prime} . \\
& \text { mult }=\text { fix } f \text {. lam } x \text {. lam } y \text {. } \\
& \text { case } x \text { of } \mathbf{z} \Rightarrow \mathbf{z} \mid \mathbf{s} x^{\prime} \Rightarrow \operatorname{add}\left(f x^{\prime} y\right) y \\
& \text { expo }=\text { fix } f \text {. lam } x \text {. } \operatorname{lam} n \text {. } \\
& \text { case } n \text { of } \mathbf{z} \Rightarrow(\mathbf{s} \mathbf{z}) \mid \mathbf{s} n^{\prime} \Rightarrow \operatorname{mult} x\left(f x n^{\prime}\right) \\
& \text { quot }=\text { fix } f \text {. lam } x \text {. } \operatorname{lam} y \text {. } \\
& \text { case sub } x y \text { of } \\
& \mathbf{z} \Rightarrow \text { case sub } y x \text { of } \mathbf{z} \Rightarrow\langle\mathbf{s} \mathbf{z}, \mathbf{z}\rangle \mid \mathbf{s} x^{\prime} \Rightarrow\langle\mathbf{z}, x\rangle \\
& \mid \mathbf{s} w \Rightarrow \text { let val } v=f(\mathbf{s} w) y \text { in }\langle\mathbf{s}(\mathbf{f s t} v) \text {, snd } v\rangle
\end{aligned}
$$

Exercise 2.13: Specify a call-by-name operational semantics for our language where the constructors are lazy that is they should not evaluate their arguments.
Solution: We start by defining lazy values. If we discover an expression $\mathbf{s} e$ then we reached a value as we will only evaluate e when needed. Similarly, a pair $\left\langle e_{1}, e_{2}\right\rangle$ is a value.
$\overline{\mathbf{z ~ L a z y _ V a l ~}^{\text {lval_z }}}$
$\overline{\text { lam } x . e ~ L a z y_{-} V a l}$

$$
\begin{aligned}
& \overline{\mathbf{s} \text { e Lazy_Val }}^{\text {Ival_s }} \\
& {\overline{\left\langle e_{1}, e_{2}\right\rangle L a z y_{-} V a l}} \text { Ival_pair }
\end{aligned}
$$

We proceed by revising the operational semantics of Mini-ML.
$\overline{\mathbf{z} \stackrel{l}{\hookrightarrow} \mathbf{z}}$ evl_z $\overline{\mathrm{s} e \stackrel{l}{\hookrightarrow} \mathbf{s} e}$ evl_s

$$
\overline{\left\langle e_{1}, e_{2}\right\rangle \stackrel{l}{\hookrightarrow}\left\langle e_{1}, e_{2}\right\rangle} \text { evl_pair }
$$

$$
\frac{e \stackrel{l}{\hookrightarrow}\left\langle e_{1}, e_{2}\right\rangle \quad e_{1} \stackrel{l}{\hookrightarrow} v}{l} \text { evl_fst } \quad \frac{e \stackrel{l}{\hookrightarrow}\left\langle e_{1}, e_{2}\right\rangle \quad e_{2} \stackrel{l}{\hookrightarrow} v}{l} \text { evl_snd }
$$

$$
\text { fst } e \stackrel{l}{\hookrightarrow} v \quad \text { snd } e \stackrel{l}{\hookrightarrow} v
$$

The evl_letn rule does not change as it already is lazy, i.e. it does not evaluate the argument x. In order to force the evaluation of an expression, we choose to include the evl_letv rule.

The evl_fix rule stays the same.
$\frac{[\text { fix } e / x] e \stackrel{l}{\hookrightarrow} v}{\text { fix } e \stackrel{l}{\hookrightarrow} v}$ evl_fix

Theorem 1 (Value Soundness). If $\mathcal{D}:: e \stackrel{l}{\hookrightarrow} v$ then $\mathcal{E}:: v$ Lazy_Val.
Proof. The proof follows by induction over the structure of the deduction $\mathcal{D}:: e \stackrel{l}{\hookrightarrow} v$. We will only show a few typical cases.

Case: $\mathcal{D}=\frac{{ }_{\mathbf{z}} \stackrel{l}{\hookrightarrow}}{}$ evl_z . Then \mathbf{z} Lazy_Val by the rule Ival_z.

Case: $\mathcal{D}=\overline{\mathbf{s} e \stackrel{l}{\hookrightarrow} \mathbf{s} e}$ evl_s. Then $\mathbf{s} e L a z y_{-} V a l$ by the rule Ival_s.
Case: $\mathcal{D}=\overline{\operatorname{lam} x . e \stackrel{l}{\hookrightarrow} \operatorname{lam} x . e}$ evl_lam.

Then lam $x . e \operatorname{Lazy_ Val}$ by the rule Ival_lam.
Case: $\mathcal{D}=\frac{\begin{array}{c}\mathcal{D}_{1} \\ \stackrel{l}{l} \text { lam } x . e^{\prime}\end{array}}{\left[e_{2} / x\right] e^{\prime} \stackrel{\mathcal{D}_{2}}{\hookrightarrow} v} e_{1} e_{2} \stackrel{l}{\hookrightarrow} v \quad$ vvl_app
The induction hypothesis on \mathcal{D}_{2} yields a deduction $\mathcal{E}:: v$ Lazy_Val.
Case: $\mathcal{D}=\frac{e^{\stackrel{\mathcal{D}_{1}}{\hookrightarrow}\left\langle e_{1}, e_{2}\right\rangle}}{\text { fst } e \stackrel{l}{\hookrightarrow} v} e_{1} \stackrel{\mathcal{D}_{2}}{\hookrightarrow} v$.
The induction hypothesis on \mathcal{D}_{2} yields a deduction $\mathcal{E}::$ v Lazy_Val.

Exercise 2.14-Part 1: Prove that v Value is derivable if and only if $v \hookrightarrow v$ is derivable. That is, values are exactly those expressions that evaluate to themselves.
Solution: Theorem 2. If $\mathcal{D}:: v$ Value then $\mathcal{E}:: v \hookrightarrow v$.
Proof. By induction over the structure of the deduction $\mathcal{D}:: v$ Value.
Case: $\mathcal{D}=\frac{}{\mathbf{z} \text { Value }}$ val_z. Then $\mathbf{z} \hookrightarrow \mathbf{z}$ by the rule ev_z.

$$
\mathcal{D}_{1}
$$

Case: $\mathcal{D}=\frac{v \text { Value }}{\mathbf{s} v \text { Value }}$ val_s
The induction hypothesis on \mathcal{D}_{1} yields a deduction $\mathcal{E}_{1}:: v \hookrightarrow v$. Using the inference rule ev_s we conclude that $\mathbf{s} v \hookrightarrow \mathbf{s} v$.

Case: $\mathcal{D}=\overline{\operatorname{lam} x . e \text { Value }}$ val_lam.
Then lam $x . e \hookrightarrow$ lam $x . e$ by the rule ev_lam.

$$
\begin{array}{ll}
v_{1} \hookrightarrow v_{1} & \text { by induction hypothesis on } \mathcal{D}_{1} \\
v_{2} \hookrightarrow v_{2} & \text { by induction hypothesis on } \mathcal{D}_{2} \\
\left\langle v_{1}, v_{2}\right\rangle \hookrightarrow\left\langle v_{1}, v_{2}\right\rangle & \text { by rule ev_pair }
\end{array}
$$

Theorem 3. If $\mathcal{E}:: v \hookrightarrow v$ then $\mathcal{D}:: v$ Value.
Proof. Follows immediately from the value-soundness theorem Theorem 2.1 p 19 of the lecture notes.

Exercise 2.14-Part 2: Write a Mini-ML function observe : nat \rightarrow nat that, given a lazy value of type nat, returns the corresponding eager value if it exists.

Solution:

There are two possible ways to observe the value of a lazy expression. The first solution uses the let val construct to force the evaluation of a lazy expression.

$$
\text { observe }=\text { fix } f . \operatorname{lam} x . \text { case } x \text { of } \mathbf{z} \Rightarrow \mathbf{z} \mid \mathbf{s} x^{\prime} \Rightarrow \text { let val } v=f x^{\prime} \text { in } \mathbf{s} v
$$

The second solution is based on continuations. The basic idea is the following: any function $f: t \rightarrow s$ can be rewritten into a function f^{\prime} of type $t \rightarrow(s \rightarrow b) \rightarrow b$. In contrast to f, the function f^{\prime} takes an extra function as an argument, called a continuation, which accumulates the results. To use the function f^{\prime} to compute the original function f, we give it the initial continuation which is often the identity function as an argument. Applying this idea to define observe we first define a function observe ${ }^{\prime}$ which takes x and a continuation k as an argument. In the base case, we just call the continuation k applied to \mathbf{z}. In the recursive case, we apply the successor function to the result of the continuation. Note that the successor function will be only applied to values once it is executed.

$$
\begin{aligned}
\text { observe }^{\prime} & =\text { fix } f . \operatorname{lam} x . \operatorname{lam} k . \text { case } x \text { of } \mathbf{z} \Rightarrow k \mathbf{z} \mid \mathbf{s} x^{\prime} \Rightarrow f x^{\prime}(\operatorname{lam} v . k(\mathbf{s} v)) \\
\text { observe } & =\operatorname{lam} x . \text { observe } x(\operatorname{lam} v . v)
\end{aligned}
$$

Let us consider the following evaluation: observe' $\mathbf{s}(\mathbf{s}((\lambda x . x) \mathbf{z})) k$.

$$
\begin{array}{llll}
\text { first rec. call: } & \text { observe }^{\prime} & (\mathbf{s}((\lambda x . x) \mathbf{z})) & \left(\operatorname{lam} v_{1} \cdot k\left(\mathbf{s} v_{1}\right)\right) \\
\text { sec. rec. call : } & \text { observe }^{\prime} & ((\lambda x . x) \mathbf{z}) & \left(\operatorname{lam} v_{2} \cdot\left(\operatorname{lam} v_{1} . k\left(\mathbf{s} v_{1}\right)\right)\left(\mathbf{s} v_{2}\right)\right)
\end{array}
$$

Now observe ${ }^{\prime}$ will evaluate $((\lambda x . x) \mathbf{z})$ to \mathbf{z} and reach the base case where we need to compute $\left(\operatorname{lam} v_{2} .\left(\operatorname{lam} v_{1} \cdot k\left(\mathbf{s} v_{1}\right)\right)\left(\mathbf{s} v_{2}\right)\right) \mathbf{z}$.

