
Chapter 2

Natural Deduction

Ich wollte zunächst einmal einen Formalismus aufstellen, der dem
wirklichen Schließen möglichst nahe kommt. So ergab sich ein
,,Kalkül des natürlichen Schließens“.1

— Gerhard Gentzen
Untersuchungen über das logische Schließen [Gen35]

In this chapter we explore ways to define logics, or, which comes to the same
thing, ways to give meaning to logical connectives. Our fundamental notion is
that of a judgment based on evidence. For example, we might make the judg-
ment “It is raining” based on visual evidence. Or we might make the judgment
“‘A implies A’ is true for any proposition A” based on a derivation. The use
of the notion of a judgment as conceptual prior to the notion of proposition
has been advocated by Martin-Löf [ML85a, ML85b]. Certain forms of judg-
ments frequently recur and have therefore been investigated in their own right,
prior to logical considerations. Two that we will use are hypothetical judgments
and parametric jugments (the latter are sometimes called general judgments or
schematic judgments).

A hypothetical judgment has the form “J2 under hypothesis J1”. We con-
sider this judgment evident if we are prepared to make the judgment J2 once
provided with evidence for J1. Formal evidence for a hypothetical judgment
is a hypothetical derivation where we can freely use the hypothesis J1 in the
derivation of J2. Note that hypotheses need not be used, and could be used
more than once.

A parametric judgment has the form “J for any a” where a is a parameter
which may occur in J . We make this judgment if we are prepared to make the
judgment [O/a]J for arbitrary objects O of the right category. Here [O/a]J is
our notation for substituting the object O for parameter a in the judgment J .
Formal evidence for a parametric judgment J is a parametric derivation with
free occurrences of the parameter a.

1First I wanted to construct a formalism which comes as close as possible to actual rea-
soning. Thus arose a “calculus of natural deduction”.
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4 Natural Deduction

Formal evidence for a judgment in form of a derivation is usually written in
two-dimensional notation:

D
J

if D is a derivation of J . For the sake of brevity we sometimes use the alternative
notation D :: J . A hypothetical judgment is written as

u
J1

...
J2

where u is a label which identifies the hypothesis J1. We use the labels to
guarantee that hypotheses which are introduced during the reasoning process
are not used outside their scope.

The separation of the notion of judgment and proposition and the corre-
sponding separation of the notion of evidence and proof sheds new light on
various styles that have been used to define logical systems.

An axiomatization in the style of Hilbert [Hil22], for example, arises when
one defines a judgment “A is true” without the use of hypothetical judgments.
Such a definition is highly economical in its use of judgments, which has to
be compensated by a liberal use of implication in the axioms. When we make
proof structure explicit in such an axiomatization, we arrive at combinatory
logic [Cur30].

A categorical logic [LS86] arises (at least in the propositional case) when
the basic judgment is not truth, but entailment “A entails B”. Once again,
presentations are highly economical and do not need to seek recourse in complex
judgment forms (at least for the propositional fragment). But derivations often
require many hypotheses, which means that we need to lean rather heavily on
conjunction here. Proofs are realized by morphisms which are an integral part
of the machinery of category theory.

While these are interesting and in many ways useful approaches to logic
specification, neither of them comes particularly close to capturing the practice
of mathematical reasoning. This was Gentzen’s point of departure for the design
of a system of natural deduction [Gen35]. From our point of view, this system is
based on the simple judgment “A is true”, but relies critically on hypothetical
and parametric judgments. In addition to being extremely elegant, it has the
great advantage that one can define all logical connectives without reference to
any other connective. This principle of modularity extends to the meta-theoretic
study of natural deduction and simplifies considering fragments and extension of
logics. Since we will consider many fragments and extension, this orthogonality
of the logical connectives is a critical consideration. There is another advantage
to natural deduction, namely that its proofs are isomorphic to the terms in a λ-
calculus via the so-called Curry-Howard isomorphism [How69], which establishes
many connections to functional programming.
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2.1 Intuitionistic Natural Deduction 5

Finally, we arrive at the sequent calculus (also introduced by Gentzen in his
seminal paper [Gen35]) when we split the single judgment of truth into two:
“A is an assumption” and “A is true”. While we still employ the machinery of
parametric and hypothetical judgments, we now need an explicit rule to state
that “A is an assumption” is sufficient evidence for “A is a true”. The reverse,
namely that if “A is true” then “A may be used as an assumption” is the Cut
rule which he proved to be redundant in his Hauptsatz. For Gentzen the sequent
calculus was primarily a technical device to prove consistency of his system of
natural deduction, but it exposes many details of the fine structure of proofs in
such a clear manner that many logic presentations employ sequent calculi. The
laws governing the structure of proofs, however, are more complicated than the
Curry-Howard isomorphism for natural deduction might suggest and are still
the subject of study [Her95, Pfe95].

We choose natural deduction as our definitional formalism as the purest
and most widely applicable. Later we justify the sequent calculus as a calculus
of proof search for natural deduction and explicitly relate the two forms of
presentation.

We begin by introducing natural deduction for intuitionistic logic, exhibiting
its basic principles.

2.1 Intuitionistic Natural Deduction

The system of natural deduction we describe below is basically Gentzen’s system
NJ [Gen35] or the system which may be found in Prawitz [Pra65]. The calculus
of natural deduction was devised by Gentzen in the 1930’s out of a dissatis-
faction with axiomatic systems in the Hilbert tradition, which did not seem to
capture mathematical reasoning practices very directly. Instead of a number of
axioms and a small set of inference rules, valid deductions are described through
inference rules only, which at the same time explain the meaning of the logical
quantifiers and connectives in terms of their proof rules.

A language of (first-order) terms is built up from variables x, y, etc., function
symbols f , g, etc., each with a unique arity, and parameters a, b, etc. in the usual
way.

Terms t ::= x | a | f(t1, . . . , tn)

A constant c is simply a function symbol with arity 0 and we write c instead of
c(). Exactly which function symbols are available is left unspecified in the gen-
eral development of predicate logic and only made concrete for specific theories,
such as the theory of natural numbers. However, variables and parameters are
always available. We will use t and s to range over terms.

The language of propositions is built up from predicate symbols P , Q, etc.
and terms in the usual way.

Propositions A ::= P (t1, . . . , tn) | A1 ∧A2 | A1 ⊃A2 | A1 ∨A2 | ¬A
| ⊥ | > | ∀x. A | ∃x. A
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6 Natural Deduction

A propositional constant P is simply a predicate symbol with no arguments and
we write P instead of P (). We will use A, B, and C to range over propositions.
Exactly which predicate symbols are available is left unspecified in the general
development of predicate logic and only made concrete for specific theories.

The notions of free and bound variables in terms and propositions are defined
in the usual way: the variable x is bound in propositions of the form ∀x. A and
∃x. A. We use parentheses to disambiguate and assume that ∧ and ∨ bind
more tightly than ⊃. It is convenient to assume that propositions have no free
individual variables; we use parameters instead where necessary. Our notation
for substitution is [t/x]A for the result of substituting the term t for the variable
x in A. Because of the restriction on occurrences of free variables, we can assume
that t is free of individual variables, and thus capturing cannot occur.

The main judgment of natural deduction is “C is true” written as C true,
from hypotheses A1 true, . . . , An true. We will model this as a hypothetical judg-
ment. This means that certain structural properties of derivations are tacitly
assumed, independently of any logical inferences. In essence, these assumptions
explain what hypothetical judgments are.

Hypothesis. If we have a hypothesis A true than we can conclude A true.

Weakening. Hypotheses need not be used.

Duplication. Hypotheses can be used more than once.

Exchange. The order in which hypotheses are introduced is irrelevant.

In natural deduction each logical connective and quantifier is characterized
by its introduction rule(s) which specifies how to infer that a conjunction, dis-
junction, etc. is true. The elimination rule for the logical constant tells what
other truths we can deduce from the truth of a conjunction, disjunction, etc.
Introduction and elimination rules must match in a certain way in order to
guarantee that the rules are meaningful and the overall system can be seen as
capturing mathematical reasoning.

The first is a local soundness property: if we introduce a connective and
then immediately eliminate it, we should be able to erase this detour and find
a more direct derivation of the conclusion without using the connective. If this
property fails, the elimination rules are too strong: they allow us to conclude
more than we should be able to know.

The second is a local completeness property: we can eliminate a connective in
a way which retains sufficient information to reconstitute it by an introduction
rule. If this property fails, the elimination rules are too weak: they do not allow
us to conclude everything we should be able to know.

We provide evidence for local soundness and completeness of the rules by
means of local reduction and expansion judgments, which relate proofs of the
same proposition.

One of the important principles of natural deduction is that each connective
should be defined only in terms of inference rules without reference to other
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2.1 Intuitionistic Natural Deduction 7

logical connectives or quantifiers. We refer to this as orthogonality of the con-
nectives. It means that we can understand a logical system as a whole by
understanding each connective separately. It also allows us to consider frag-
ments and extensions directly and it means that the investigation of properties
of a logical system can be conducted in a modular way.

We now show the introduction and elimination rules, local reductions and
expansion for each of the logical connectives in turn. The rules are summarized
on page 2.1.

Conjunction. A∧B should be true if both A and B are true. Thus we have
the following introduction rule.

A true B true
∧I

A ∧B true

If we consider this as a complete definition, we should be able to recover both
A and B if we know A ∧B. We are thus led to two elimination rules.

A ∧B true ∧EL
A true

A ∧B true ∧ER
B true

To check our intuition we consider a deduction which ends in an introduction
followed by an elimination:

D
A true

E
B true

∧I
A ∧B true

∧EL
A true

Clearly, it is unnecessary to first introduce the conjunction and then eliminate it:
a more direct proof of the same conclusion from the same (or fewer) assumptions
would be simply

D
A true

Formulated as a transformation or reduction between derivations we have

D
A true

E
B true

∧I
A ∧B true

∧EL
A true

=⇒R
D

A true

and symmetrically

D
A true

E
B true

∧I
A ∧B true

∧ER
B true

=⇒R
E

B true
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8 Natural Deduction

The new judgment
D

A true =⇒R
E

A true

relates derivations with the same conclusion. We say D locally reduces to E .
Since local reductions are possible for both elimination rules for conjunction,
our rules are locally sound. To show that the rules are locally complete we show
how to reintroduce a conjunction from its components in the form of a local
expansion.

D
A ∧B true =⇒E

D
A ∧B true

∧EL
A true

D
A ∧B true

∧ER
B true

∧I
A ∧B true

Implication. To derive A⊃B true we assume A true and then derive B true.
Written as a hypothetical judgment:

u
A true

...
B true

⊃Iu
A⊃B true

We must be careful that the hypothesis A true is available only in the deriva-
tion above the premiss. We therefore label the inference with the name of the
hypothesis u, which must not be used already as the name for a hypothesis in
the derivation of the premiss. We say that the hypothesis A true labelled u is
discharged at the inference labelled ⊃Iu. A derivation of A ⊃ B true describes
a construction by which we can transform a derivation of A true into a deriva-
tion of B true: we substitute the derivation of A true wherever we used the
assumption A true in the hypothetical derivation of B true. The elimination
rule expresses this: if we have a derivation of A⊃ B true and also a derivation
of A true, then we can obtain a derivation of B true.

A⊃B true A true
⊃E

B true

The local reduction rule carries out the substitution of derivations explained
above.

u
A true
D

B true
⊃Iu

A⊃B true
E

A true
⊃E

B true

=⇒R

E
u

A true
D

B true
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2.1 Intuitionistic Natural Deduction 9

The final derivation depends on all the hypotheses of E and D except u, for
which we have substituted E . An alternative notation for this substitution of
derivations for hypotheses is [E/u]D :: B true. The local reduction described
above may significantly increase the overall size of the derivation, since the
deduction E is substituted for each occurrence of the assumption labeled u in
D and may thus be replicated many times. The local expansion simply rebuilds
the implication.

D
A⊃B true =⇒E

D
A⊃B true

u
A true

⊃E
B true

⊃Iu
A⊃B true

Disjunction. A∨B should be true if either A is true or B is true. Therefore
we have two introduction rules.

A true ∨IL
A ∨B true

B true ∨IR
A ∨B true

If we have a hypothesis A ∨ B true, we do not know how it might be inferred.
That is, a proposed elimination rule

A ∨B true
?

A true

would be incorrect, since a deduction of the form

E
B true

∨IR
A ∨B true

?
A true

cannot be reduced. As a consequence, the system would be inconsistent: if we
have at least one theorem (B, in the example) we can prove every formula (A,
in the example). How do we use the assumption A ∨ B in informal reasoning?
We often proceed with a proof by cases: we prove a conclusion C under the
assumption A and also show C under the assumption B. We then conclude
C, since either A or B by assumption. Thus the elimination rule employs two
hypothetical judgments.

A ∨B true

u
A true

...
C true

w
B true

...
C true

∨Eu,w

C true
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10 Natural Deduction

Now one can see that the introduction and elimination rules match up in two
reductions. First, the case that the disjunction was inferred by ∨IL.

D
A true

∨IL
A ∨B true

u
A true
E1

C true

w
B true
E2

C true
∨Eu,w

C true

=⇒R

D
u

A true
E1

C true

The other reduction is symmetric.

D
B true

∨IR
A ∨B true

u
A true
E1

C true

w
B true
E2

C true
∨Eu,w

C true

=⇒R

D
w

B true
E2

C true

As in the reduction for implication, the resulting derivation may be longer than
the original one. The local expansion is more complicated than for the previous
connectives, since we first have to distinguish cases and then reintroduce the
disjunction in each branch.

D
A ∨B true =⇒E

D
A ∨B true

u
A true

∨IL
A ∨B true

w
B true

∨IR
A ∨B true

∨Eu,w

A ∨B true

Negation. In order to derive ¬A we assume A and try to derive a contra-
diction. Thus it seems that negation requires falsehood, and, indeed, in most
literature on constructive logic, ¬A is seen as an abbreviation of A ⊃ ⊥. In
order to give a self-contained explanation of negation by an introduction rule,
we employ a judgment that is parametric in a propositional parameter p: If we
can derive any p from the hypothesis A we conclude ¬A.

u
A true

...
p true

¬Ip,u

¬A true

¬A true A true
¬E

C true
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2.1 Intuitionistic Natural Deduction 11

The elimination rule follows from this view: if we know ¬A true and A true
then we can conclude any formula C is true. In the form of a local reduction:

u
A true
D

p true
¬Ip,u

¬A true
E

A true
¬E

C true

=⇒R

E
u

A true
[C/p]D
C true

The substitution [C/p]D is valid, since D is parametric in p. The local expansion
is similar to the case for implication.

D
¬A true =⇒E

D
¬A true

u
A true

¬E
p true

¬Ip,u

¬ trueA

Truth. There is only an introduction rule for >:

>I
> true

Since we put no information into the proof of >, we know nothing new if we
have an assumption > and therefore we have no elimination rule and no local
reduction. It may also be helpful to think of > as a 0-ary conjunction: the
introduction rule has 0 premisses instead of 2 and we correspondingly have 0
elimination rules instead of 2. The local expansion allows the replacement of
any derivation of > by >I.

D
> true =⇒E >I

> true

Falsehood. Since we should not be able to derive falsehood, there is no in-
troduction rule for ⊥. Therefore, if we can derive falsehood, we can derive
everything.

⊥ true
⊥E

C true

Note that there is no local reduction rule for ⊥E. It may be helpful to think
of ⊥ as a 0-ary disjunction: we have 0 instead of 2 introduction rules and we
correspondingly have to consider 0 cases instead of 2 in the elimination rule.
Even though we postulated that falsehood should not be derivable, falsehood
could clearly be a consequence of contradictory assumption. For example, A ∧
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12 Natural Deduction

¬A⊃⊥ true is derivable. While there is no local reduction rule, there still is a
local expansion in analogy to the case for disjunction.

D
⊥ true =⇒E

D
⊥ true

⊥E
⊥ true

Universal Quantification. Under which circumstances should ∀x. A be true?
This clearly depends on the domain of quantification. For example, if we know
that x ranges over the natural numbers, then we can conclude ∀x. A if we can
prove [0/x]A, [1/x]A, etc. Such a rule is not effective, since it has infinitely many
premisses. Thus one usually retreats to rules such as induction. However, in
a general treatment of predicate logic we would like to prove statements which
are true for all domains of quantification. Thus we can only say that ∀x. A
should be provable if [a/x]A is provable for a new parameter a about which we
can make no assumption. Conversely, if we know ∀x. A, we know that [t/x]A
for any term t.

[a/x]A true
∀Ia

∀x. A true

∀x. A true
∀E

[t/x]A true

The label a on the introduction rule is a reminder the parameter a must be
“new”, that is, it may not occur in any undischarged assumption in the proof
of [a/x]A or in ∀x. A itself. In other words, the derivation of the premiss must
be parametric in a. The local reduction carries out the substitution for the
parameter.

D
[a/x]A true

∀I
∀x. A true

∀E
[t/x]A true

=⇒R
[t/a]D

[t/x]A true

Here, [t/a]D is our notation for the result of substituting t for the parameter a
throughout the deduction D. For this substitution to preserve the conclusion,
we must know that a does not already occur in A. Similarly, we would change
the hypotheses if a occurred free in any of the undischarged hypotheses of D.
This might render a larger proof incorrect. As an example, consider the formula
∀x. ∀y. P (x)⊃ P (y) which should clearly not be true for all predicates P . The
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2.1 Intuitionistic Natural Deduction 13

following is not a deduction of this formula.

u
P (a) true

∀Ia?
∀x. P (x) true

∀E
P (b) true

⊃Iu
P (a)⊃ P (b) true

∀Ib
∀y. P (a)⊃ P (y) true

∀Ia
∀x. ∀y. P (x)⊃ P (y) true

The flaw is at the inference marked with “?,” where a is free in the hypothesis
labelled u. Applying a local proof reduction to the (incorrect) ∀I inference
followed by ∀E leads to the the assumption [b/a]P (a) which is equal to P (b).
The resulting derivation

u
P (b) true

⊃Iu
P (a)⊃ P (b) true

∀Ib
∀y. P (a)⊃ P (y) true

∀Ia
∀x. ∀y. P (x)⊃ P (y) true

is once again incorrect since the hypothesis labelled u should read P (a), not
P (b).

The local expansion for universal quantification is much simpler.

D
∀x. A true =⇒E

D
∀x. A true

∀E
[a/x]A true

∀Ia
∀x. A true

Existential Quantification. We conclude that ∃x. A is true when there is a
term t such that [t/x]A is true.

[t/x]A true
∃I

∃x. A true

When we have an assumption ∃x. A we do not know for which t it is the case
that [t/x]A holds. We can only assume that [a/x]A holds for some parameter
a about which we know nothing else. Thus the elimination rule resembles the
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14 Natural Deduction

one for disjunction.

∃x. A true

u
[a/x]A true

...
C true

∃Ea,u

C true

The restriction is similar to the one for ∀I: the parameter a must be new, that is,
it must not occur in ∃x. A, C, or any assumption employed in the derivation of
the second premiss. In the reduction rule we have to perform two substitutions:
we have to substitute t for the parameter a and we also have to substitute for
the hypothesis labelled u.

D
[t/x]A true

∃I
∃x. A

u
[a/x]A true

E
C true

∃Ea,u

C true

=⇒R

D
u

[t/x]A true
[t/a]E
C true

The proviso on occurrences of a guarantees that the conclusion and hypotheses
of [t/a]E have the correct form. The local expansion for existential quantification
is also similar to the case for disjunction.

D
∃x. A true =⇒E

D
∃x. A true

u
[a/x]A true

∃I
∃x. A true

∃Ea,u

∃x. A true

Here is a simple example of a natural deduction. We attempt to show the
process by which such a deduction may have been generated, as well as the
final deduction. The three vertical dots indicate a gap in the derivation we are
trying to construct, with hypotheses and their consequences shown above and
the desired conclusion below the gap.

...
A ∧ (A⊃B)⊃B true

;

u
A ∧ (A⊃B) true

...
B true

⊃Iu
A ∧ (A⊃B)⊃B true
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2.1 Intuitionistic Natural Deduction 15

;

u
A ∧ (A⊃B) true

∧EL
A true

...
B true

⊃Iu
A ∧ (A⊃B)⊃B true

;

u
A ∧ (A⊃B) true

∧EL
A true

u
A ∧ (A⊃B) true

∧ER
A⊃B true

...
B true

⊃Iu
A ∧ (A⊃B)⊃B true

;

u
A ∧ (A⊃B) true

∧ER
A⊃B true

u
A ∧ (A⊃B) true

∧EL
A true

⊃E
B true

...
B true

⊃Iu
A ∧ (A⊃B)⊃B true

;

u
A ∧ (A⊃B) true

∧ER
A⊃B true

u
A ∧ (A⊃B) true

∧EL
A true

⊃E
B true

⊃Iu
A ∧ (A⊃B)⊃B true

The symbols A and B in this derivation stand for arbitrary propositions; we
can thus established a judgment parametric in A and B. In other words, every
instance of this derivation (substituting arbitrary propositions for A and B) is
a valid derivation.

Below is a summary of the rules of intuitionistic natural deduction.
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16 Natural Deduction

Introduction Rules Elimination Rules

A true B true
∧I

A ∧B true

A ∧B true ∧EL
A true

A ∧B true ∧ER
B true

A true ∨IL
A ∨B true

B true ∨IR
A ∨B true

A ∨B true

u
A true

...
C true

w
B true

...
C true

∨Eu,w

C true

u
A true

...
B true

⊃Iu
A⊃B true

A⊃B true A true
⊃E

B true

u
A true

...
p true

¬Ip,u

¬A true

¬A true A true
¬E

C true

>I
> true no > elimination

no ⊥ introduction

⊥ true
⊥E

C true

[a/x]A true
∀Ia

∀x. A true

∀x. A true
∀E

[t/x]A true

[t/x]A true
∃I

∃x. A true

∃x. A true

u
[a/x]A true

...
C true

∃Ea,u

C true
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2.2 Classical Logic 17

2.2 Classical Logic

The inference rules so far only model intuitionistic logic, and some classically
true propositions such as A ∨ ¬A (for an arbitrary A) are not derivable, as we
will see in Section 3.5. There are three commonly used ways one can construct a
system of classical natural deduction by adding one additional rule of inference.
⊥C is called Proof by Contradiction or Rule of Indirect Proof, ¬¬C is the Double
Negation Rule, and XM is referred to as Excluded Middle.

u
¬A
...
⊥

⊥u
C

A

¬¬A ¬¬C

A

XM
A ∨ ¬A

The rule for classical logic (whichever one chooses to adopt) breaks the pattern
of introduction and elimination rules. One can still formulate some reductions
for classical inferences, but natural deduction is at heart an intuitionistic cal-
culus. The symmetries of classical logic are much better exhibited in sequent
formulations of the logic. In Exercise 2.3 we explore the three ways of extending
the intuitionistic proof system and show that they are equivalent.

Another way to obtain a natural deduction system for classical logic is to
allow multiple conclusions (see, for example, Parigot [Par92]).

2.3 Localizing Hypotheses

In the formulation of natural deduction from Section 2.1 correct use of hypothe-
ses and parameters is a global property of a derivation. We can localize it by
annotating each judgment in a derivation by the available parameters and hy-
potheses. We give here a formulation of natural deduction for intuitionistic logic
with localized hypotheses, but not parameters. For this we need a notation for
hypotheses which we call a context.

Contexts Γ ::= · | Γ, u:A

Here, “·” represents the empty context, and Γ, u:A adds hypothesis A true la-
belled u to Γ. We assume that each label u occurs at most once in a context in
order to avoid ambiguities. The main judgment can then be written as Γ ` A,
where

·, u1:A1, . . . , un:An ` A

stands for
u1

A1 true . . .
un

An true
...

A true
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18 Natural Deduction

in the notation of Section 2.1.
We use a few important abbreviations in order to make this notation less

cumbersome. First of all, we may omit the leading “·” and write, for example,
u1:A1, u2:A2 instead of ·, u1:A1, u2:A2. Secondly, we denote concatenation of
contexts by overloading the comma operator as follows.

Γ, · = Γ
Γ, (Γ′, u:A) = (Γ,Γ′), u:A

With these additional definitions, the localized version of our rules are as
follows.

Introduction Rules Elimination Rules

Γ ` A Γ ` B
∧I

Γ ` A ∧B

Γ ` A ∧B ∧EL
Γ ` A

Γ ` A ∧B ∧ER
Γ ` B

Γ ` A ∨IL
Γ ` A ∨B

Γ ` B ∨IR
Γ ` A ∨B

Γ ` A ∨B Γ, u:A ` C Γ, w:B ` C
∨Eu,w

Γ ` C

Γ, u:A ` B
⊃Iu

Γ ` A⊃B

Γ ` A⊃B Γ ` A
⊃E

Γ ` B

Γ, u:A ` p
¬Ip,u

Γ ` ¬A

Γ ` ¬A Γ ` A
¬E

Γ ` C

>I
Γ ` > no > elimination

no ⊥ introduction

Γ ` ⊥
⊥E

Γ ` C

Γ ` [a/x]A
∀Ia

Γ ` ∀x. A

Γ ` ∀x. A
∀E

Γ ` [t/x]A

Γ ` [t/x]A
∃I

Γ ` ∃x. A

Γ ` ∃x. A Γ, u:[a/x]A ` C
∃Ea,u

Γ ` C

We also have a new rule for hypotheses which was an implicit property of the
hypothetical judgments before.

u
Γ1, u:A,Γ2 ` A

Other general assumptions about hypotheses, namely that they may be used ar-
bitrarily often in a derivation and that their order does not matter, are indirectly
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2.3 Localizing Hypotheses 19

reflected in these rules. Note that if we erase the context Γ from the judgments
throughout a derivation, we obtain a derivation in the original notation.

When we discussed local reductions in order to establish local soundness, we
used the notation

D
u

A true
E

C true

for the result of substituting the derivation D of A true for all uses of the
hypothesis A true labelled u in E . We would now like to reformulate the property
with localized hypotheses. In order to prove that the (now explicit) hypotheses
behave as expected, we use the principle of structural induction over derivations.
Simply put, we prove a property for all derivations by showing that, whenever
it holds for the premisses of an inference, it holds for the conclusion. Note that
we have to show the property outright when the rule under consideration has
no premisses. Such rules are the base cases for the induction.

Theorem 2.1 (Structural Properties of Hypotheses) The following prop-
erties hold for intuitionistic natural deduction.

1. (Exchange) If Γ1, u1:A,Γ2, u2:B,Γ3 ` C then Γ1, u2:B,Γ2, u1:A,Γ3 ` C.

2. (Weakening) If Γ1,Γ2 ` C then Γ1, u:A,Γ2 ` C.

3. (Contraction) If Γ1, u1:A,Γ2, u2:A,Γ3 ` C then Γ1, u:A,Γ2,Γ3 ` C.

4. (Substitution) If Γ1, u:A,Γ2 ` C and Γ1 ` A then Γ1,Γ2 ` C.

Proof: The proof is in each case by straightforward induction over the structure
of the first given derivation.

In the case of exchange, we appeal to the inductive assumption on the deriva-
tions of the premisses and construct a new derivation with the same inference
rule. Algorithmically, this means that we exchange the hypotheses labelled u1

and u2 in every judgment in the derivation.
In the case of weakening and contraction, we proceed similarly, either adding

the new hypothesis u:A to every judgment in the derivation (for weakening), or
replacing uses of u1 and u2 by u (for contraction).

For substitution, we apply the inductive assumption to the premisses of the
given derivation D until we reach hypotheses. If the hypothesis is different from
u we can simply erase u:A (which is unused) to obtain the desired derivation.
If the hypothesis is u:A the derivation looks like

D =
u

Γ1, u:A,Γ2 ` A

so C = A in this case. We are also given a derivation E of Γ1 ` A and have
to construct a derivation F of Γ1,Γ2 ` A. But we can just repeatedly apply
weakening to E to obtain F . Algorithmically, this means that, as expected, we
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20 Natural Deduction

substitute the derivation E (possibly weakened) for uses of the hypotheses u:A
in D. Note that in our original notation, this weakening has no impact, since
unused hypotheses are not apparent in a derivation. 2

It is also possible to localize the derivations themselves, using proof terms.
As we will see in Section 2.4, these proof terms form a λ-calculus closely related
to functional programming. When parameters, hypotheses, and proof terms
are all localized our main judgment becomes decidable. In the terminology of
Martin-Löf [ML94], the main judgment is then analytic rather than synthetic.
We no longer need to go outside the judgment itself in order to collect evidence
for it: An analytic judgment encapsulates its own evidence.

2.4 Proof Terms

The basic judgment of the system of natural deduction is the derivability of a
formula A, written as ` A. It has been noted by Howard [How69] that there is
a strong correspondence between (intuitionistic) derivations and λ-terms. The
formulas A then act as types classifying λ-terms. In the propositional case,
this correspondence is an isomorphism: formulas are isomorphic to types and
derivations are isomorphic to simply-typed λ-terms. These isomorphisms are
often called the propositions-as-types and proofs-as-programs paradigms.

If we stopped at this observation, we would have obtained only a fresh inter-
pretation of familiar deductive systems, but we would not be any closer to the
goal of providing a language for reasoning about properties of programs. How-
ever, the correspondences can be extended to first-order and higher-order logics.
Interpreting first-order (or higher-order) formulas as types yields a significant
increase in expressive power of the type system. However, maintaining an iso-
morphism during the generalization to first-order logic is somewhat unnatural
and cumbersome. One might expect that a proof contains more information
than the corresponding program. Thus the literature often talks about extract-
ing programs from proofs or contracting proofs to programs. We do not discuss
program extraction further in these notes.

We now introduce a notation for derivations to be carried along in deduc-
tions. For example, if M represents a proof of A and N represents a proof of B,
then the pair 〈M,N〉 can be seen as a representation of the proof of A ∧ B by
∧-introduction. We write Γ ` M : A to express the judgment M is a proof term
for A under hypotheses Γ. We also repeat the local reductions and expansions
from the previous section in the new notation. For local expansion we state the
proposition whose truth must established by the proof term on the left-hand
side. This expresses restrictions on the application of the expansion rules.
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2.4 Proof Terms 21

Conjunction. The proof term for a conjunction is simply the pair of proofs
of the premisses.

Γ ` M : A Γ ` N : B
∧I

Γ ` 〈M,N〉 : A ∧B

Γ ` M : A ∧B ∧EL
Γ ` fst M : A

Γ ` M : A ∧B ∧ER
Γ ` sndM : B

The local reductions now lead to two obvious local reductions of the proof terms.
The local expansion is similiarly translated.

fst 〈M,N〉 −→R M
snd 〈M,N〉 −→R N

M : A ∧B −→E 〈fstM, sndM〉

Implication. The proof of an implication A ⊃ B will be represented by a
function which maps proofs of A to proofs of B. The introduction rule explicitly
forms such a function by λ-abstraction and the elimination rule applies the
function to an argument.

Γ, u:A ` M : B
⊃Iu

Γ ` (λu:A. M) : A⊃B

Γ ` M : A⊃B Γ ` N : A
⊃E

Γ ` M N : B

The binding of the variable u in the conclusion of ⊃I correctly models the
intuition that the hypothesis is discharged and not available outside deduction
of the premiss. The abstraction is labelled with the proposition A so that we
can later show that the proof term uniquely determines a natural deduction. If
A were not given then, for example, λu. u would be ambigous and serve as a
proof term for A⊃A for any formula A. The local reduction rule is β-reduction;
the local expansion is η-expansion.

(λu:A. M) N −→R [N/u]M

M : A⊃B −→E λu:A. M u

In the reduction rule, bound variables in M that are free in N must be renamed
in order to avoid variable capture. In the expansion rule u must be new—it
may not already occur in M .

Disjunction. The proof term for disjunction introduction is the proof of the
premiss together with an indication whether it was inferred by introduction on
the left or on the right. We also annotate the proof term with the formula
which did not occur in the premiss so that a proof term always proves exactly
one proposition.

Γ ` M : A ∨IL
Γ ` inlB M : A ∨B

Γ ` N : B ∨IR
Γ ` inrA N : A ∨B
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The elimination rule corresponds to a case construction.

Γ ` M : A ∨B Γ, u:A ` N1 : C Γ, w:B ` N2 : C
∨Eu,w

Γ ` ( case M of inl u ⇒ N1 | inr w ⇒ N2) : C

Since the variables u and w label assumptions, the corresponding proof term
variables are bound in N1 and N2, respectively. The two reduction rules now
also look like rules of computation in a λ-calculus.

case inlB M of inl u ⇒ N1 | inr w ⇒ N2 −→R [M/u]N1

case inrA M of inl u ⇒ N1 | inr w ⇒ N2 −→R [M/w]N2

M : A ∨B −→E case M of inl u ⇒ inlB u | inr w ⇒ inrA w

The substitution of a deduction for a hypothesis is represented by the substitu-
tion of a proof term for a variable.

Negation. This is similar to implication. Since the premise of the rule is
parametric in p the corresponding proof constructor must bind a propositional
variable p, indicated by µp. Similarly, the elimination construct must record
the formula to maintain the property that every valid term proves exactly one
proposition. This is indicated as a subscript C to the infix operator “·”.

Γ, u:A ` M : p
¬Ip,u

Γ ` µpu:A. M : ¬A

Γ ` M : ¬A Γ ` N : A
¬E

Γ ` M ·C N : C

The reduction performs formula and proof term substitutions.

(µpu:A. M) ·C N −→R [N/u][C/p]M

M : ¬A −→E µpu:A. M ·p u

Truth. The proof term for >I is written 〈 〉.

>I
Γ ` 〈 〉 : >

Of course, there is no reduction rule. The expansion rule reads

M : > −→E 〈 〉

Falsehood. Here we need to annotate the proof term abort with the formula
being proved to avoid ambiguity.

Γ ` M : ⊥
⊥E

Γ ` abortC M : C

Again, there is no reduction rule, only an expansion rule.

M : ⊥ −→E abort⊥ M

Draft of January 20, 2004



2.4 Proof Terms 23

In summary, we have

Terms M ::= u Hypotheses
| 〈M1,M2〉 | fst M | sndM Conjunction
| λu:A. M | M1 M2 Implication
| inlA M | inrA M Disjunction
| ( case M of inl u1 ⇒ M1 | inr u2 ⇒ M2)
| µpu:A. M | M1 ·A M2 Negation
| 〈 〉 Truth
| abortA M Falsehood

and the reduction rules

fst 〈M,N〉 −→R M
snd 〈M,N〉 −→R N

(λu:A. M) N −→R [N/u]M
case inlB M of inl u ⇒ N1 | inr w ⇒ N2 −→R [M/u]N1

case inrA M of inl u ⇒ N1 | inr w ⇒ N2 −→R [M/w]N2

(µpu:A. M) ·C N −→R [N/u][C/p]M
no rule for truth

no rule for falsehood

The expansion rules are given below.

M : A ∧B −→E 〈fstM, sndM〉
M : A⊃B −→E λu:A. M u

M : A ∨B −→E case M of inl u ⇒ inlB u | inr w ⇒ inrA w
M : ¬A −→E µpu:A. M ·p u
M : > −→E 〈 〉
M : ⊥ −→E abort⊥ M

We can now see that the formulas act as types for proof terms. Shifting to
the usual presentation of the typed λ-calculus we use τ and σ as symbols for
types, and τ ×σ for the product type, τ → σ for the function type, τ +σ for the
disjoint sum type, 1 for the unit type and 0 for the empty or void type. Base
types b remain unspecified, just as the basic propositions of the propositional
calculus remain unspecified. Types and propositions then correspond to each
other as indicated below.

Types τ ::= b | τ1 × τ2 | τ1 → τ2 | τ1 + τ2 | 1 | 0
Propositions A ::= p | A1 ∧A2 | A1 ⊃A2 | A1 ∨A2 | > | ⊥

We omit here the negation type which is typically not used in functional
programming and thus does not have a well-known counterpart. We can think
of ¬A as corresponding to τ → 0, where τ corresponds to A. We now summarize
and restate the rules above, using the notation of types instead of propositions
(omitting only the case for negation). Note that contexts Γ now declare variables
with their types, rather than hypothesis labels with their proposition.
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Γ . M : τ Term M has type τ in context Γ

Γ . M : τ Γ . N : σ
pair

Γ . 〈M,N〉 : τ × σ

Γ . M : τ × σ
fst

Γ . fstM : τ

Γ . M : τ × σ
snd

Γ . sndM : σ

Γ, u:τ . M : σ
lam

Γ . (λu:τ. M) : τ → σ

u : τ in Γ
var

Γ . u : τ

Γ . M : τ → σ Γ . N : τ
app

Γ . M N : σ

Γ . M : τ
inl

Γ . inlσ M : τ + σ

Γ . N : σ
inr

Γ . inrτ N : τ + σ

Γ . M : τ + σ Γ, u:τ . N1 : ν Γ, w:σ . N2 : ν
case

Γ . ( case M of inl u ⇒ N1 | inr w ⇒ N2) : ν

unit
Γ . 〈 〉 : 1

Γ . M : 0
abort

Γ . abortν M : ν

2.5 Exercises

Exercise 2.1 Prove the following by natural deduction using only intuitionistic
rules when possible. We use the convention that ⊃, ∧, and ∨ associate to the
right, that is, A⊃B⊃C stands for A⊃(B⊃C). A ≡ B is a syntactic abbreviation
for (A ⊃ B) ∧ (B ⊃ A). Also, we assume that ∧ and ∨ bind more tightly than
⊃, that is, A∧B⊃C stands for (A∧B)⊃C. The scope of a quantifier extends
as far to the right as consistent with the present parentheses. For example,
(∀x. P (x)⊃ C) ∧ ¬C would be disambiguated to (∀x. (P (x)⊃ C)) ∧ (¬C).

1. ` A⊃B ⊃A.

2. ` A ∧ (B ∨ C) ≡ (A ∧B) ∨ (A ∧ C).

3. (Peirce’s Law). ` ((A⊃B)⊃A)⊃A.

4. ` A ∨ (B ∧ C) ≡ (A ∨B) ∧ (A ∨ C).

5. ` A⊃ (A ∧B) ∨ (A ∧ ¬B).

6. ` (A⊃ ∃x. P (x)) ≡ ∃x. (A⊃ P (x)).

7. ` ((∀x. P (x))⊃ C) ≡ ∃x. (P (x)⊃ C).
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8. ` ∃x. ∀y. (P (x)⊃ P (y)).

Exercise 2.2 We write A ` B if B follows from hypothesis A and A a` B
for A ` B and B ` A. Which of the following eight parametric judgments are
derivable intuitionistically?

1. (∃x. A)⊃B a` ∀x. (A⊃B)

2. A⊃ (∃x. B) a` ∃x. (A⊃B)

3. (∀x. A)⊃B a` ∃x. (A⊃B)

4. A⊃ (∀x. B) a` ∀x. (A⊃B)

Provide natural deductions for the valid judgments. You may assume that the
bound variable x does not occur in B (items 1 and 3) or A (items 2 and 4).

Exercise 2.3 Show that the three ways of extending the intuitionistic proof
system for classical logic are equivalent, that is, the same formulas are deducible
in all three systems.

Exercise 2.4 Assume we had omitted disjunction and existential quantification
and their introduction and elimination rules from the list of logical primitives.
In the classical system, give a definition of disjunction and existential quantifi-
cation (in terms of other logical constants) and show that the introduction and
elimination rules now become admissible rules of inference. A rule of inference is
admissible if any deduction using the rule can be transformed into one without
using the rule.

Exercise 2.5 Assume we would like to design a system of natural deduction
for a simple temporal logic. The main judgment is now “A is true at time t”
written as

A @ t.

1. Explain how to modify the given rules for natural deduction to this more
general judgment and show the rules for implication and universal quan-
tification.

2. Write out introduction and elimination rules for the temporal operator
©A which should be true if A is true at the next point in time. Denote
the “next time after t” by t + 1.

3. Show the local reductions and expansions which show the local soundness
and completness of your rules.

4. Write out introduction and elimination rules for the temporal operator
2A which should be true if A is true at all times.

5. Show the local reductions and expansions.

Exercise 2.6 Design introduction and elimination rules for the connectives
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1. A ≡ B, usually defined as (A⊃B) ∧ (B ⊃A),

2. A | B (exclusive or), usually defined as (A ∧ ¬B) ∨ (¬A ∧B),

without recourse to other logical constants or operators. Also show the corre-
sponding local reductions and expansions. For each of the following proposed
connectives, write down appropriate introduction and eliminations rules and
show the local reductions and expansion or indicate that no such rule may ex-
ist.

3. A∧B for ¬(A ∧B),

4. A∨B for ¬(A ∨B),

5. A⊃B for ¬(A⊃B),

6. +A for ¬¬A,

7. ∃∗x. A for ¬∀x. ¬A,

8. ∀∗x. A for ¬∃x. ¬A,

9. A ⇒ B | C for (A⊃B) ∧ (¬A⊃ C).

Exercise 2.7 A given introduction rule does not necessarily uniquely determine
matching elimination rules and vice versa. Explore if the following alternative
rules are also sound and complete.

1. Replace the two elimination rules for conjunction by

A ∧B true

u
A true

w
B true

...
C true

∧Eu,w

C true

2. Add the following elimination rule for truth.

> true C true
>E

C true

3. Add the following introduction rule for falsehood.

p true
⊥Ip

⊥ true

Consider if any other of the standard connectives might permit alternative in-
troduction or elimination rules which preserve derivability.
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Exercise 2.8 For each of 14 following proposed entailments either write out a
proof term for the corresponding implication or indicate that it is not derivable.

1. A⊃ (B ⊃ C) a` (A ∧B)⊃ C

2. A⊃ (B ∧ C) a` (A⊃B) ∧ (A⊃ C)

3. A⊃ (B ∨ C) a` (A⊃B) ∨ (A⊃ C)

4. (A⊃B)⊃ C a` (A ∨ C) ∧ (B ⊃ C)

5. (A ∨B)⊃ C a` (A⊃ C) ∧ (B ⊃ C)

6. A ∧ (B ∨ C) a` (A ∧B) ∨ (A ∧ C)

7. A ∨ (B ∧ C) a` (A ∨B) ∧ (A ∨ C)

Exercise 2.9 The de Morgan laws of classical logic allow negation to be dis-
tributed over other logical connectives. Investigate which directions of the de
Morgan equivalences hold in intuitionistic logic and give proof terms for the
valid entailments.

1. ¬(A ∧B) a` ¬A ∨ ¬B

2. ¬(A ∨B) a` ¬A ∧ ¬B

3. ¬(A⊃B) a` A ∧ ¬B

4. ¬(¬A) a` A

5. ¬> a` ⊥

6. ¬⊥ a` >

7. ¬∀x. A a` ∃x. ¬A

8. ¬∃x. A a` ∀x. ¬A

Exercise 2.10 An alternative approach to negation is to introduce another
judgment, A is false, and develop a system of evidence for this judgment. For
example, we might say that A ∧ B is false if either A is false or B is false.
Similarly, A∨B is false if both A and B are false. Expressed as inference rules:

A false

A ∧B false

B false

A ∧B false

A false B false

A ∨B false

1. Write out a complete set of rules defining the judgment A false for the
conjunction, implication, disjunction, truth, and falsehood.

2. Verify local soundness and completeness of your rules, if these notions
make sense.
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3. Now we define that ¬A true if A false. Complete the set of rules and
verify soundness and completeness if appropriate.

4. Does your system satisfy that every proposition A is either true or false?
If so, prove it. Otherwise, show a counterexample.

5. Compare this notion of negation with the standard notion in intuitionistic
logic.

6. Extend your system to include universal and existential quantification (if
possible) and discuss its properties.
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