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|= ∃x. F1 By assumption
|= [t/x]F1 for some t By inversion

Γ
−

=⇒ [t/x]A1 \ [t/x]F1 By substitution for parameter a

Γ
−

=⇒ [t/x]A1 By i.h.

Γ
−

=⇒ ∃x. A1 By rule ∃R

Case:

R =

R1

Γ
−

=⇒ [a/x]A1 \ [a/x]F1

∀Ra
Γ
−

=⇒ ∀x. A1 \ ∀x. F1

|= ∀x. F1 By assumption
|= [b/x]F1 for a new parameter b By inversion
|= [a/x]F1 By substititution of a for b

Γ
−

=⇒ [a/x]A1 By i.h.

Γ
−

=⇒ ∀x. A1 By rule ∀R

2

The opposite direction is more difficult. The desired theorem:

If Γ
−

=⇒ A then Γ
−

=⇒ A \ F for some F with |= F

cannot be proved directly by induction, since the premisses of the two deriva-
tions are different in the ∃R and ∀L rules. However, one can be obtained from
the other by substituting terms for parameters. Since this must be done simul-
taneously, we introduce a new notation.

Parameter Substitution ρ ::= · | ρ, t/a

We assume all the parameters a substituted for by ρ are distinct to avoid ambi-
guity. We write A[ρ], F [ρ], and Γ[ρ], for the result of applying the substitution
ρ to a proposition, formula, or context, respectively.

Lemma 4.10 If Γ
−

=⇒ A where A = A′[ρ], Γ = Γ′[ρ] then Γ′
−

=⇒ A′ \ F for
some F such that |= F [ρ].

Proof: The proof proceeds by induction on the structure of the given derivation
D. We show only two cases, the second of which required the generalization of
the induction hypothesis.

Case:

D = init
Γ1, P

−
=⇒ P
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72 Focused Derivations

Γ1 = Γ′1[ρ], P = P ′[ρ], and P = P ′′[ρ] Assumption

Γ′1, P
′ −=⇒ P ′′ \ P ′ .= P ′′ By rule init

|= P ′[ρ]
.
= P ′′[ρ] By rule

.
= I

Case:

D =

D1

Γ
−

=⇒ [t/x]A1

∃R
Γ
−

=⇒ ∃x. A1

∃x. A1 = A′[ρ] Assumption
A′ = ∃x. A′1 for a new parameter a with
[a/x]A1 = ([a/x]A′1)[ρ, a/a] By definition of substitution
[t/x]A1 = ([a/x]A′1)[ρ, t/a] By substitution for parameter a
Γ = Γ′[ρ] Assumption
Γ′[ρ] = Γ′[ρ, t/a] Since a is new

Γ′
−

=⇒ [a/x]A′1 \ [a/x]F1, and
|= ([a/x]F1)[ρ, t/a] By i.h.

Γ′
−

=⇒ ∃x. A′1 \ ∃x. F1 By rule ∃R
|= (∃x. F1)[ρ] By rule ∃R and definition of substitution

2

Theorem 4.11 (Completeness of Equality Residuation)

If Γ
−

=⇒ A then Γ
−

=⇒ A \ F for some F and |= F .

Proof: From Lemma 4.10 with A′ = A, Γ′ = Γ, and ρ the identity substitution
on the parameters in Γ and A. 2

Next we describe an algorithm for proving residuated formulas, that is, an
algorithm for unification. We do this in two steps: first we solve the problem in
the fragment without parameters and universal quantifiers and then we extend
the solution to the general case.

There are numerous ways for describing unification algorithms in the liter-
ature. We describe the computation of the algorithm as the bottom-up search
for the derivation of a judgment. We restrict the inference rules such that they
are essentially deterministic, and the inference rules themselves can be seen as
describing an algorithm. This algorithm is in fact quite close to the implemen-
tation of it in ML which is available together with these notes.

In order to describe the algorithm in this manner, we need to introduce
existential variables (often called meta-variables or logic variables) which are
place-holders for the terms to be determined by unification. We use X and
Y to stand for existential variables. Existential variables are different from
parameters which are interpreted universally : all instances of a derivation with
a parameter are valid. Existential variables in a derivation require only one
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4.3 Unification 73

instance to arrive at a valid derivation. While parameters are always local to a
subderivation, we consider existential variables to be global in a derivation.4

The second concept we need is that of a substitution for existential variables.
We use a new notation, because this form of substitution is quite different from
substitutions for bound variables x or parameters a.

Substitutions θ ::= · | θ,X 7→ t

We require that all variables X defined by a substitution are distinct. We write
dom(θ) for the variables defined by a substitution and cod(θ) for all the variables
occuring in the terms t. For a ground substitution cod(θ) is empty. For the
technical development it is convenient to assume that the domain and co-domain
of a substitution share no variables. This rules out “circular” substitutions
such as X 7→ f(X) and it also disallows identity substitutions X 7→ X. The
latter restriction can be dropped, but it does no harm and is closer to the
implementation. As for contexts, we consider the order of the definitions in a
substitution to be irrelevant.

We write t[θ], A[θ], and Γ[θ] for the application of a substitution to a term,
proposition, or context. This is defined to be the identity on existential variables
which are not explicitly defined in the substitution.

We also need an operation of composition, written as θ1 ◦ θ2 with the prop-
erty that t[θ1 ◦ θ2] = (t[θ1])[θ2] and similarly for propositions and contexts.
Composition is defined by

(·) ◦ θ2 = θ2

(θ1, X 7→ t) ◦ θ2 = (θ1 ◦ θ2), X 7→ t[θ2]

In order for composition to be well-defined and have the desired properties we
require that dom(θ1) and dom(θ2) are disjoint, but of course variables in the
co-domain of θ1 can be defined by θ2.

Now we introduce the judgment which implicitly defines an algorithm for
unification. We write

|= F / θ θ is a most general unifier for F .

The intent (to be proven later) is that if |= F / θ then |= F [θ], which means
that θ is a unifier for F . Moreover, we show that whenever |= F [θ′] then there
exists a substitution θ′′ such that θ′ = θ ◦ θ′′, which means that θ is a most
general unifier for F (any unifier is an instance of θ).

Conjunction and Truth. Algorithmically, we impose a left-to-right order
on the solution of F1 and F2, but this just fixes a don’t care non-deterministic
choice.

|= F1 / θ1 |= F2[θ1] / θ2
∧I

|= F1 ∧ F2 / θ1 ◦ θ2

>I
|= > / ·

After all the rules have been shown, it will be easy to see that the side conditions
on composition are satisfied and θ1 ◦ θ2 is well-defined.

4[example]
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74 Focused Derivations

Existential Quantification. Existential variables are introduced for exis-
tential quantifiers. They must be “new” (even though the judgment is not
parametric). Because of the way existential variables are global to a derivation,
this freshness requirement is a global requirement: in a complete derivation, the
existential variables chosen for all existential quantifiers must be distinct. To
be completely formal about this condition would require to thread a list of exis-
tential variables through a derivation. We will dispense with this complication
here.

|= [X/x]F / (θ,X 7→ t) X globally new
∃I

|= ∃x. F / θ

Despite the strong requirement on X to be new, the derivation of the premise
is not parametric in X. That is, we cannot substitute an arbitrary term t for
X in a derivation of the permiss and obtain a valid derivation, since the vr, rv,
vv6=, and vv= rules below require one or both sides of the equation to be an
existential variable. Substituting for such a variables invalidates the application
of these rules.

Predicate and Function Constants. An equation between the same func-
tion constant applied to arguments is decomposed into equations between the
arguments. Unification fails if different function symbols are compared, but this
is only indirectly reflected by an absence of an appropriate rule. Failure can also
be explicitly incorporated in the algorithm (see Exercise ??).

|= t1
.
= s1 ∧ · · · ∧ tn .

= sn / θ
pp

|= p(t1, . . . , tn)
.
= p(s1, . . . , sn) / θ

|= t1
.
= s1 ∧ · · · ∧ tn .

= sn / θ
rr

|= f(t1, . . . , tn)
.
= f(s1, . . . , sn) / θ

These rules violate orthogonality by relying on conjunction in the premises for
the sake of conciseness of the presentation. We could avoid this by introducing
a separate judgment for the unification of lists of terms. When f or p have no
arguments, the empty conjunction in the premise should be read as >.

Existential Variables. There are four rules for variables. We write r for
terms of the form f(t1, . . . , tn). Existential variables always range over terms
(and not propositions), so we do not need rules for equations of the form X

.
= P

or P
.
= X.

X not in r
vr

|= X
.
= r / (X 7→ r)

X not in r
rv

|= r
.
= X / (X 7→ r)

These two rules come with the proviso that the existential variable X does not
occur in the term r. This is necessary to ensure that the substitution X 7→ r is
indeed a unifier. Otherwise unification fails and we can recognize formulas such
as ∃x. x .

= f(x) as false. This leaves equations of the form X
.
= Y between two

existential variables.

Y 6= X
vv6=

|= X
.
= Y / (X 7→ Y )

vv=
|= X

.
= X / ·
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We now explore the soundness and completeness of these rules, and then an-
alyze the rules as the basis of an algorithm. In the statement of the properties
below we take some care so that for a judgment |= F , F never contains free exis-
tential variables which are seen only as part of the algorithm, not the definition
of the logic. We write σ for ground substitutions.5

Theorem 4.12 (Soundness of Unification)
If |= F / θ then for any ground substitution σ defined on all existential variables
in F [θ] we have |= (F [θ])[σ].

Proof: By induction on the structure of U of |= F / θ. 2

Lemma 4.13 (Completeness Lemma for Unification)
If |= F [σ] for a ground substitution σ defined on all existential variables in F
then |= F / θ for some θ and σ = θ ◦ σ′ for some σ′.

Proof: By induction on the structure of derivation of |= F [σ]. 2

Theorem 4.14 (Completeness of Unification)
If |= F (where F contains no existential variables) then |= F / ·.

Proof: From Lemma 4.13 using the empty substitution for σ. 2

4.4 Exercises

Exercise 4.1 Give an alternative proof of the inversion properties (Theorem 4.1)
which does not use induction, but instead relies on admissibility of cut in the
sequent calculus (Theorem 3.11).

Exercise 4.2 Formulate one or several cut rules directly on inversion sequents
as presented in Section 4.1 and prove that they are admissible. Does this simplify
the development of the completeness result for inversion proofs? Show how
admissibility might be used, or illustrate why it is not much help.

5[warning: just reformulated the properties below and have not yet checked the proofs ]
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