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3.3 Resource Management

A form of choice unique to linear logic proof search is resource management :
in the bottom-up application of the left rule for implication and right rule for
tensor, we have to split the linear hypotheses and distribute them to the pre-
misses. We would like to postpone this choice until the further structure of the
derivation provides hints which resources might be needed in which subgoals.

To resolve this non-determinism, we use a technique inspired by unifica-
tion. We pass the complete list of hypotheses to both premisses and maintain
constraints which express that each hypothesis must be used in one of the two
subderivations, but not both. If one is ever used in one branch, we can propagate
this information to the other branch by constraint simplification. This mirrors
the way unification propagates substitutions for existential variables between
incomplete proof branches.

We annotate each hypothesis with an occurrence label b.

Occurrence Labels b ::= > | ⊥ | o

Here, > labels a hypothesis which is definitely present and must therefore be
consumed (in the bottom-up search), ⊥ labels a hypothesis which is definitely
not present and can therefore not be used, and an occurrence variable o labels
a hypothesis which may or may not be used, subject to some global constraints.
Constraints which arise all have the following forms.

Occurrence Constraints c ::= b1
.
= b2 | b1 + b2

.
= b3 | c1 ∧ c2 | tt

The validity judgment for constraints, |= c, is defined by the following rules.

.
= >

|= > .
= >

.
= ⊥

|= ⊥ .
= ⊥

+>⊥
|= >+⊥ .

= >
+⊥>

|= ⊥+> .
= >

no +>> rule
+⊥⊥

|= ⊥+⊥ .
= ⊥

|= c1 |= c2
∧i

|= c1 ∧ c2
tti

|= tt

We say a constraint c with occurrence variables is satisfiable if there is an assign-
ment of > and ⊥ to the occurrence variables such that the resulting constraint
is valid.

Linear hypotheses, annotated with occurrence labels, have the form

Annotated Contexts ∆ ::= · | ∆, wb:A
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It is convenient to abbreviate wb:A as Ab and ·, wb11 :A1, . . . , w
bn
n :An as ∆

~b. The

basic sequent now reads Γ; ∆
~b =⇒ C \ c, where c are the residual constraints.

The intuition should be that any satisfying assignment to the occurrence vari-
ables in c leads to a valid derivation of Γ; ∆∗ =⇒ C, where ∆∗ retains hypotheses
of the form w>:A and erases hypotheses of the form w⊥:A. We now go through
the rules, removing resource non-determinism in favor of occurrence constraints.
In practice, these constraint should be checked for satisfiability in each step for
early detection of failure. To give a more compact presentation of the rules, we
further write

~b
.
= ⊥ for b1

.
= ⊥∧ · · · ∧ bn .

= ⊥ and
~o′ + ~o′′

.
= ~b for o′1 + o′′1 = b1 ∧ · · · ∧ o′n + o′′n

.
= bn.

Hypotheses. Initial sequents change form, since the particular hypothesis we
use must be constraint to be present, while all others have to be constrained
to be absent. This leaves some residual non-determinism if several available
hypotheses match the conclusion.

I
Γ; (∆

~b, Ad) =⇒ A \ d .
= >∧~b .= ⊥

(Γ, A); (∆, A>) =⇒ C
DL

(Γ, A); ∆ =⇒ C

Multiplicative Connectives. Multiplicative connectives have to generate
constraints as discussed above. New linear hypothesis must be used somewhere,
so their initial annotation is >.

Γ; ∆
~b, A> =⇒ B \ c

(R
Γ; ∆

~b =⇒ A(B \ c

Whenever a left rule is applied to a hypothesis, its occurrence label is constrained
to the >. In addition, since linear implication is multiplicative, we generate new
occurrence variables ~o′ and ~o′′ and constrain them.

Γ; ∆
~o′ =⇒ A \ c′ Γ; ∆

~o′′ , B =⇒ C \ c′′
(L

Γ; ∆
~b, (A(B)d =⇒ C \ d .

= > ∧ c′ ∧ c′′ ∧ ~o′ + ~o′′
.
= ~b

The tensor rules are similar. Here, too, the occurrence variables ~o′ and ~o′′ must
be new.

Γ; ∆
~o′ =⇒ A \ c′ Γ; ∆

~o′′ =⇒ B \ c′′
⊗R

Γ; ∆
~b =⇒ A⊗B \ c′ ∧ c′′ ∧ ~o′ + ~o′′

.
= ~b

Γ; ∆
~b, A>, B> =⇒ C \ c

⊗L
Γ; ∆

~b, (A⊗B)d =⇒ C \ d .
= >∧ c

Draft of February 12, 1998



3.3 Resource Management 59

The 1R rule permits no linear hypotheses, so all of them are constrained to be
absent.

1R
Γ; ∆

~b =⇒ 1 \ ~b .= ⊥

Γ; ∆
~b =⇒ C \ c

1L
Γ; ∆

~b, 1d =⇒ C \ d .
= >∧ c

Additive Connectives. The additive connective are much simpler and do
not affect the occurrence constraints, except that the principal proposition of a
left rule must be constrained to be present.

Γ; ∆
~b =⇒ A \ c′ Γ; ∆

~b =⇒ B \ c′′
NR

Γ; ∆
~b =⇒ ANB \ c′ ∧ c′′

Γ; ∆
~b, A> =⇒ C \ c

NL1

Γ; ∆
~b, (ANB)d =⇒ C \ d .

= >∧ c

Γ; ∆
~b, B> =⇒ C \ c

NL2

Γ; ∆
~b, (ANB)d =⇒ C \ d .

= > ∧ c

>R
Γ; ∆

~b =⇒ > \ tt No > left rule

Γ; ∆
~b =⇒ A \ c

⊕R1

Γ; ∆
~b =⇒ A ⊕B \ c

Γ; ∆
~b =⇒ B \ c

⊕R2

Γ; ∆
~b =⇒ A⊕B \ c

Γ; ∆
~b, A> =⇒ C \ c′ Γ; ∆

~b, B> =⇒ C \ c′′
⊕L

Γ; ∆
~b, (A⊕B)d =⇒ C \ d .

= >∧ c′ ∧ c′′

No 0 right rule
0L

Γ; ∆
~b, (0)d =⇒ C \ d .

= >

Quantifiers. The interaction of the quantifiers with resource management is
benign, and limited requiring the principal propositions of left rules to occur.

Γ; ∆
~b =⇒ [a/x]A \ c

∀Ra
Γ; ∆

~b =⇒ ∀x. A \ c

Γ; ∆
~b, ([t/x]A)> =⇒ C \ c

∀L
Γ; ∆

~b, (∀x. A)d =⇒ C \ d .
= > ∧ c

Γ; ∆
~b =⇒ [t/x]A \ c

∃R
Γ; ∆

~b =⇒ ∃x. A \ c

Γ; ∆
~b, ([a/x]A)> =⇒ C \ c

∃La
Γ; ∆

~b, (∃x. A)d =⇒ C \ d .
= >∧ c
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Exponentials. There are two natural formulations of the ⊃L and !R rules: we
either do not pass any linear hypotheses to the relevant premiss as shown below,
or we pass all linear hypotheses but constrain them not to be used. Depending
on the design of the implementation, one or the other might be preferable.

(Γ, A); ∆
~b =⇒ B \ c

⊃R
Γ; ∆

~b =⇒ A⊃ B \ c

Γ; · =⇒ A \ c′ Γ; ∆
~b, B> =⇒ C \ c′′

⊃L
Γ; ∆

~b, (A⊃B)d =⇒ C \ d .
= >∧ c′ ∧ c′′

Γ; · =⇒ A \ c
!R

Γ; ∆
~b =⇒ !A \ ~b .= ⊥∧ c

(Γ, A); ∆
~b =⇒ C \ c

!L
Γ; ∆

~b, (!A)d =⇒ C \ d .
= > ∧ c

We write Θ for an assignment of> or⊥ to all occurrence variables. Applying
such an assignment to an annotated context of linear hypotheses is defined as

[Θ]· = ·,
[Θ](∆, wb:A) = [Θ]∆, w:A if [Θ]b = >, and
[Θ](∆, wb:A) = [Θ]∆ if [Θ]b = ⊥.

Applying an assignment of a derivation simply applies it to every sequent in the
derivation and erases the occurrence constraints.

We should then have the following soundness and completeness theorems.1

Theorem 3.4 (Soundness of Occurrence Constraints) If D :: (Γ; ∆
~b =⇒

C \ c) and |= [Θ]c then [Θ]D :: (Γ; [Θ]∆
~b =⇒ C).

Theorem 3.5 (Completeness of Occurrence Constraints) If D :: (Γ; ∆ =⇒
C) then D′ :: (Γ; ∆

~> =⇒ C \ c) and there is an assignment Θ such that |= [Θ]c
and D = [Θ]D′.

One or both of these “theorems” may have to be generalized before they can
be proved by induction.

How do we check constraints for satisfiability? We have not fully investigated
this issue to date. One possibility (suggested by Harland and Pym [?]) is to map
them to Boolean constraints, which would make them amenable to standard
Boolean constraint solving techniques. It seems, however, that this would lead
to an unnecessarily complex procedure. We sketch here a set of of rules which
may be used to simplify constraints put them into a normal form which should
always have solutions. The rules may be incomplete (and certainly would require
additional invariants, as we remark below). The apply to any conjunct of the
global constraint c.

1[Warning: at present I have not proven these.]
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> .
= > −→ tt

⊥ .
= ⊥ −→ tt

> .
= ⊥ unsatisfiable

⊥ .
= > unsatisfiable
o
.
= b −→ tt and substitute b for o everywhere

>+⊥ .
= b −→ b

.
= >

⊥+> .
= b −→ b

.
= >

>+> .
= b unsatisfiable

⊥+⊥ .
= b −→ b

.
= ⊥

o+> .
= b −→ o

.
= ⊥∧ b .= >

>+ o
.
= b −→ o

.
= ⊥∧ b .= >

o+⊥ .
= b −→ o

.
= b

⊥+ o
.
= b −→ o

.
= b

o1 + o2
.
= ⊥ −→ o1

.
= ⊥ ∧ o2

.
= ⊥

o1 + o2
.
= > in normal form

o1 + o2
.
= o3 in normal form

The last two cases of normal forms do not imply satisfiability. For example,
o + o

.
= > is not satisfiable. Similarly, o + o′

.
= o′ entails that o

.
= ⊥, which

might be inconsistent with other constraints. However, I believe that there
is a natural ordering on occurrence variables (and an induced ordering among
atomic constraints) which can guarantee that certain cases of this form can not
arise, or arise only in a limited number of circumstances which can be checked
easily.

[ Extra Credit Assignment: Complete the rules above as needed
to guarantee the satisfiability of normal forms for equations which
arise from proof search and constraint simplification and proof them
correct. ]
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