
Fundamental Structures of Computer Science II

15-212-ML Fall 1998

CONCURRENCY



Concurrency

Operations in a program are concurrent if they could be
executed in parallel.

Concurrent programs are inherently nondeterministic.

Concurrent programming languages provide abstraction
mechanisms for concurrency, with less overhead than
using system-level processes.

2



Forcing Sequential Operations

Being forced to have sequential operations can have
disatrous e�ects for inherently concurrent applications.

Example: the Unix xrn \lost connection to remote news
server" feature.

3



Natural Places for Concurrent Programming

� Interactive systems such as window managers and
GUIs. User interaction can be complex.

� A spreadsheet might provide an editor, a window for
graphical displays of data, and even a speech
interface.

� Many applications have \deadtime" between input
events when running.

� If application is output intensive, concurrency can
make it responsive to input.

� Distributed systems { each node has its own state
and control 
ow. Anything involving a network.

� Client-server protocols.

4



Language Support

Abstraction is essential to writing and maintaining
software

When it comes to concurrency, most languages do not
provide useful abstractions

Raw process creation using fork() is provided in C

5



Reasoning About Languages

In SML there is a clean semantics that aids our reasoning

� ` e1 ,! true � ` e2 ,! v

� ` if e1 then e2 else e2 ,! v

With references, reasoning becomes more complicated

let

val memo = ref (fn () => raise Impossible)

fun s'() =

let

val r = s()

in

memo := (fn () => r);

r

end

in

memo := s';

fn () => (!memo)()

end

6



Concurrent Programming is Hard

Sequential programs are deterministic

let

val x = ref 0

in

x := !x + 1; x := !x + 2;

print (!x)

end

Reasoning required when programming with concurrency
is much more complicated

let

val x = ref 0

in

(x := !x + 1) k (x := !x + 2);

print (!x)

end

7



Ingredients for Concurrency

� A mechanism for introducing sequential threads of
control, or processes

� A way for processes to communicate

� A mechanism for processes to synchronize to
restrict order of execution and limit nondeterminism

8



Flavors of Concurrent Language

Shared-memory

� Rely on imperative features for interprocess
communication

� Separate synchronization primitives to control
access to shared state.

� Example: Java

Message-passing

� Uni�ed mechanism for synchronization and
communication

� Example: CML

9



Interference

let

val x = ref 0

in

(x := !x + 1) k (x := !x + 2);

print (!x)

end

Interference can occur when two processes are accessing
critical regions of code where assignments are made

Synchronization provides the mechanism for avoiding
interference, by allowing a process to obtain a lock in a
critical region.

10



Deadlock

Consider the following schematic of processes P and Q:

P: acquire A; acquire B; compute; release B; release A;
Q: acquire B; acquire A; compute; release A; release B;

This can deadlock with P holding the lock on A and Q
holding the lock on B.

11



Livelock

Now consider P and Q de�ned as:

P: Q:

l: acquire A; l: acquire B;
if (B is held) if (A is held)
then (release A; goto l) then (release B; goto l)
else acquire B else acquire A

compute compute
release B; release A release A; release B

What might happen here?

12



Threads in Java

public interface Runnable f

public abstract void run();

g

public class Thread implements Runnable f

public Thread();

public Thread(String name);

...

public void run();

public void start()

throws IllegalThreadStateException;

public �nal void stop();

public �nal void suspend()

throws SecurityException;

public �nal void resume()

throws SecurityException;

...

g

13



Threads in Java (cont)

class PrimeThread extends Thread f

long minPrime;

PrimeThread(long minPrime) f

this.minPrime = minPrime;

g

public void run() f

// compute primes � minPrime

...

g

g

PrimeThread p = new PrimeThread(101);

p.start();

14



Threads in Java (cont)

� A synchronized method acquires a lock before it
executes.

� If a variable is ever to be assigned by one thread
and used by another, all accesses to that variable
should be synchronized.

� Locking is carried out using monitors in the JVM.

� Synchronization makes methods and blocks atomic.

� Deadlocking is not prevented.

15



Threads in Java (cont)

public class Box f

private Object boxContents;

public synchronized Object get() f

Object contents = boxContents;

boxContents = null;

return contents;

g

public synchronized boolean put(Object contents)f

if (boxContents != null) return false;

boxContents = contents;

return true;

g

g

16



Shared Memory Model

� Promotes e�ciency, but not correctness

� Requires \defensive programming" (protect your
data from interference).

� Poor �t with value-oriented programming (ML)

17



Message-Passing Languages

� Processes communicate by sending messages across
channels.

� The communication may either be blocking (or
synchronous) or non-blocking (asynchronous)
[4 possibilities]

� Mailbox metaphor: In asynchronous send, once the
letter is in the mailbox, the sender can proceed with
other tasks.

� Telephone metaphor: In synchronous send, the
sender is tied up until his message is received.

� Synchronous message passing is easier to

reason about.

18



Basic CML Primitives: Threads

A thread is a CML process. Initially, there is a single
thread but more can be created using spawn:

val spawn : (unit -> unit) -> thread id

� Creates a new thread to evaluate the function.

� The number of threads is unbounded.

� Since threads are represented by ML values, their
storage can be recycled by the garbage collector.

19



Basic CML Primitives: Channels

For threads to be useful, we need ways to communicate
between them.

For communicating values of type 'a, CML provides

type 'a chan

The send and receive operations are

val recv : 'a chan -> 'a

val send : ('a chan * 'a) -> unit

Message passing is synchronous

20



Basic CML Primitives: Channels (cont)

When a thread executes a send or receive on a
channel, it blocks until some other thread o�ers the
complementary communication.

The message is then passed from sender to receiver, and
the threads continue.

Message passing involves both communication and
synchronization

21



Example: Reference Cells

As a simple example of channels, as well as client-server
protocols, we'll implement the following signature for
mutable cells:

signature CELL = sig

type 'a cell

val cell : 'a -> 'a cell

val get : 'a cell -> 'a

val put : 'a cell * 'a -> unit

end

22



Example: Reference Cells (cont)

structure Cell :> CELL = struct

datatype 'a request = GET | PUT of 'a

datatype 'a cell = CELL of

freqCh:'a request CML.chan, replyCh:'a CML.chang

fun get (CELLfreqCh, replyChg) =

(CML.send (reqCh, GET); CML.recv replyCh)

fun put (CELLfreqCh, ...g, x) =

CML.send (reqCh, PUT x)

...

end

23



Example: Reference Cells (cont)

structure Cell :> CELL = struct

datatype 'a request = GET | PUT of 'a

datatype 'a cell = CELL of

freqCh:'a request CML.chan, replyCh:'a CML.chang

fun cell x =

let

val reqCh = CML.channel()

val replyCh = CML.channel()

fun loop x =

(case (CML.recv reqCh)

of GET => (CML.send (replyCh, x); loop x)

| (PUT x') => loop x')

in

CML.spawn (fn () => loop x);

CELL freqCh = reqCh, replyCh = replyChg

end

fun get (CELLfreqCh, replyChg) =

(CML.send (reqCh, GET); CML.recv replyCh)

fun put (CELLfreqCh, ...g, x) =

CML.send (reqCh, PUT x)

end

24



Example: Reference Cells (cont)

This is an example of client-server style of concurrent
programming.

Why is the implementation correct? Why can't multiple
clients interfere with each other, and receive each other's
messages, since they are communicating on the same
channel?

25



Example: Streams

fun nats start =

let

val ch = CML.channel()

fun count i = (CML.send(ch, i); count(i+1))

in

CML.spawn (fn () => count start);

ch

end

26



Sieve of Eratosthenes

fun filter (p, inCh) =

let

val outCh = CML.channel();

fun loop () =

let

val i = CML.recv inCh

in

if ((i mod p) <> 0)

then CML.send (outCh, i)

else ();

loop()

end

in

CML.spawn loop;

outCh

end

27



Sieve of Eratosthenes (cont)

fun sieve() =

let

val primes = CML.channel()

fun head ch =

let

val p = CML.recv ch

in

CML.send (primes, p);

head (filter (p, ch))

end

in

CML.spawn (fn () => head (nats 2));

primes

end

How do these streams di�er from those we built using
suspensions?

28



Data
ow Networks

This is an example of a data
ow network, where the data
moves from one process to another.

Simplest example is pipeline where data moves along a
chain of processes.

29



The Fibonacci Network

[Picture of network here]

30



Fibonacci Network

fun fibchannel () =

let

val outCh = CML.channel()

val c1 = CML.channel() and c2 = CML.channel()

and c3 = CML.channel()

val c4 = CML.channel() and c5 = CML.channel()

in

delay (SOME 0) (c4, c5);

copy (c2, c3, c4);

add (c3, c5, c1);

copy (c1, c2, outCh);

CML.send (c1, 1);

outCh

end

31



Fibonacci Network (cont)

Implemented using in�nitely looping threads:

val forever : 'a -> ('a -> 'a) -> unit

fun forever init f =

let

fun loop s = loop (f s)

in

ignore (CML.spawn (fn () => loop init))

end

32



Fibonacci Network (cont)

fun add (inCh1, inCh2, outCh) =

forever ()

(fn () =>

CML.send (outCh,

(CML.recv inCh1) + (CML.recv inCh2)))

fun delay init (inCh, outCh) =

forever init

(fn NONE => SOME(CML.recv inCh)

| (SOME x) => (CML.send(outCh, x); NONE))

fun copy (inCh, outCh1, outCh2) =

forever ()

(fn () =>

let val x = CML.recv inCh

in CML.send(outCh1, x); CML.send(outCh2, x)

end)

33



Fibonacci Network: A Bug

fun fibchannel () =

let

val outCh = CML.channel()

val c1 = CML.channel() and c2 = CML.channel()

and c3 = CML.channel()

val c4 = CML.channel() and c5 = CML.channel()

in

delay (SOME 0) (c4, c5);

copy (c2, c4, c3);

add (c3, c5, c1);

copy (c1, c2, outCh);

CML.send (c1, 1);

outCh

end

34



Fibonacci Network: A Bug

So, deadlock can be very hard to guard against.

The language can help: introduce nondeterminism in the
order of blocking communication operations.

Leads us to events

35



Events

CML provides the type constructor for abstract
synchronous operations:

type 'a event

An � event returns a value of type � when it is
synchronized on.

36



Events (cont)

Events allow us to manipulate multiple concurrent
operations without explicitly synchronizing on any speci�c
one.

Enables us to reason about and manipulate the
nondeterminism in a program

select [

recvEvt chan1,

recvEvt chan2

]

The thread blocks at the select statement, waiting to
receive a message from either channel

37



Basic Event Operations

val sendEvt : ('a chan * 'a) -> unit event

val recvEvt : 'a chan -> 'a event

val wrap : 'a event * ('a->'b) -> 'b event

val select : 'a event list -> 'a

The wrap function enables us to build up event values

38



Events in Java

Events are \broadcast" and various classes of events can
be subscribed to by \listening" to the broadcast channel

public abstract interface MouseListener extends EventListener f
public abstract void mouseClicked (MouseEvent e);

public abstract void mouseEntered (MouseEvent e);

public abstract void mouseExited (MouseEvent e);

public abstract void mousePressed (MouseEvent e);

public abstract void mouseReleased (MouseEvent e);

g

Does not support selection from a dynamically changing
set of events.

39



Example: Reference Cells Using Events

datatype 'a cell = CELL of

fgetCh:'a CML.chan, putCh:'a CML.chang

fun get (CELLfgetCh, ...g) = CML.recv getCh

fun put (CELLfputCh, ...g, x) = CML.send (putCh, x)

fun cell x =

let

val getCh = CML.channel()

val putCh = CML.channel()

fun loop x = select [

wrap (sendEvt(getCh, x), fn () => loop x),

wrap (recvEvt putCh, loop)

]

in

CML.spawn (fn () => loop x);

CELL fgetCh = getCh, putCh = putChg

end

40



Concurrency and Computation

Concurrency can enable more powerful computation.

Recall that there is no way to compute the disjunction of
two semi-decision procedures in SML.

Using parallel computation, however, we can.

How?

41



Parallel Or & Semi-Decision Procedures

fun parallelOr (p, q) x =

let
val chp = CML.channel()

val chq = CML.channel()

fun decide pred ch =

if pred(x) then CML.send(ch, true)

else ()

in
CML.spawn (fn () => decide p chp);

CML.spawn (fn () => decide q chq);

CML.select [

CML.recvEvt chp,

CML.recvEvt chq

]

end

42



Reference/Acknowledgement

Most of the material presented here has been adapted
from the manuscript Concurrent Programming in ML

by John Reppy. The CML code in these examples is
copyrighted, (c) 1998 by Bell Labs, Lucent Technologies.

43


