
15–212: Fundamental Structures of Computer Science II

Some Notes on Interpreters

Frank Pfenning

Edited by John Lafferty

Draft of November 10, 1998

These notes provide a brief introduction to the specification techniques used for type-checking
and evaluation in the context of writing interpreters or compilers for programming languages.

1 Introduction

Specifications are an indispensable part of software development. They explain what must be
implemented without necessarily saying how. Depending of the nature of the problem domain,
specifications may range from incomplete, natural language descriptions to mathematically precise
formulations of the functionality to be implemented.

Much of the task of software engineering is to decompose a large and vague system description
into modules with clear specifications which can then be coded in a programming language. The
ML language helps in this task by providing a language of signatures to express at least some
aspects of the specification formally in a way that can be checked mechanically by a compiler. This
includes the types of the module interfaces and the information about which representations are
concrete and which are abstract.

However, the need for deeper, mathematically rigorous specifications remains, especially for
domains that are themselves precise and formal. Programming languages themselves present one
such domain. We have already seen how context-free grammars provide precise means for specifying
the concrete syntax of programming languages. Via parser generators, certain classes of context-free
grammars can in fact be turned into implementations automatically.

The next phase in an interpreter or compiler consists of type-checking. So far, we have used
semi-formal descriptions of the rules for typing ML expressions of the kind:

The application e1 e2 has type t1 if e1 has type t2 → t1 and e2 has type t2.

The understanding is that if an application does not follow this schema, it is not well-typed. Rules
of this form originate in logic. For example, if we write A ⊃ B for A implies B we might say:

If A ⊃ B is true and A is true, then B must be true.

In fact, this can be seen as a specification of what “A ⊃ B” means.
Because of this connection to logic, there has been a well-developed specification formalism for

some time, certainly well before the advent of programming languages. This formalism is centered
on the notion of inference rule. Inference rules are used to define when judgments hold. Judgments

1

in the examples above are “Expression e has type t” and “Proposition A is true”. Judgments and
inference rules together make up a system of deduction or deductive system. We now explain the
basic concepts of deductive systems as they are needed for the purpose of this course.

Judgment. A judgment may be evident. In that case we must have evidence for it in the form of
a derivation. We therefore also say that a judgment J is derivable or that a judgment J holds.

Inference Rule. An inference rule is written as

J1 . . .Jn
name

J

where J1, . . . , Jn are the premises of the rule, J is its conclusion, and name is its name. A rule
of this form specifies that if the premises J1, . . . , Jn are derivable, then so is the conclusion J.
In practice, most inference rules are schematic. This means that they contain variables and any
instance represents a valid inference. For example,

e1 : t2 → t1 e2 : t2
tp app

e1 e2 : t1

is an inference rule schematic in expressions e1 and e2 and types t1 and t2. Since most inference
rules are schematic, we simply refer to them as inference rules, dropping the qualifier “schematic.”

Axiom. An axiom is simply an inference rule with 0 premises. Therefore, the conclusion holds
unconditionally, and the evidence for it is trivial. For example

tp true
true : bool

is an axiom.

Derivation. A derivation is complete evidence for a judgment given by a tree of valid inferences
starting from axioms. For example,

tp not
not : bool→ bool

tp false
false : bool

tp app
not false : bool

is a derivation of the judgment not false : bool.
In these notes we will apply deductive systems to the specification of the typing and evaluation

rules for a small functional language. Often, such specifications can be turned into implementations
in a straightforward way, although we will see that there are some limitations.

2 Typing Simple Expressions and Declarations

We begin with a small language of expressions that encompass rationals and booleans. In addition,
we allow local declarations using a let form. First, we specify the abstract syntax in the form
of a BNF-grammar, ignoring certain aspects of the concrete syntax such as the precise form of
identifiers, or the precedence of the arithmetic and boolean operators. These have been treated
earlier in the course. We use x to range over variables and n to range over integers.

2

Types t ::= rat | bool

Expressions e ::= n | e1+e2 | e1-e2 | e1*e2 | e1/e2 | -e
| true | false | if e1 then e2 else e3

| e1=e2 | e1<e2

| let d in e end
| x

Declarations d ::= ε | d val x=e

Note that expressions may contain variables. How do we specify the type of variables? In our
language so far, variables are introduced by declarations of the form val x=e and we can determine
the type of x from the type of e. When we analyze the scope of a declaration we must remember
the type we inferred for the variable. This is the purpose of a type environment or context. We use Γ
(capital Gamma) as a letter ranging over type environments, writing ◦ for the empty environment
and Γ, x:t for the environment that extends Γ by assigning type t to variable x.

Type Environments Γ ::= ◦ | Γ, x:t

The typing judgment has the form Γ ` e : t which we read as “expression e has type t in type
environment Γ”. The type environment assigns types to the (free) variables in e. Most inference
rules for the typing judgment (also called typing rules) are rather obvious.

Γ ` e1 : rat Γ ` e2 : rat
tp +

Γ ` e1+e2 : rat

Γ ` e1 : rat Γ ` e2 : rat
tp -

Γ ` e1-e2 : rat

Γ ` e1 : rat Γ ` e2 : rat
tp *

Γ ` e1*e2 : rat

Γ ` e1 : rat Γ ` e2 : rat
tp /

Γ ` e1/e2 : rat

tp int
Γ ` n : rat

Γ ` e : rat
tp neg

Γ ` -e : rat

tp true
Γ ` true : bool

tp false
Γ ` false : bool

Γ ` e1 : bool Γ ` e2 : t Γ ` e3 : t
tp if

Γ ` if e1 then e2 else e3 : t

Γ ` e1 : rat Γ ` e2 : rat
tp =

Γ ` e1=e2 : bool

Γ ` e1 : rat Γ ` e2 : rat
tp ¡

Γ ` e1<e2 : bool

For example, the rule tp if indicates that both branches of the conditional must have the same
type t, which is also the type of the conditional. Variables are simply looked up in the type

3

environment, where we must be careful to obey the rules of shadowing: the rightmost occurrence
of an identifier in a context declares its type.

tp var eq
Γ, x:t ` x : t

Γ ` x : t where x 6= x′
tp var neq

Γ, x′:t′ ` x : t

What will happen if a variable is not declared in the type environment? From the point of view
of the deductive systems, we simply will not be able to derive any typing judgment for such an
expression. For example, there is no type t such that the judgment ◦ ` x+3 : t is derivable. On the
other hand, we have

tp var eq
◦, x:rat ` x : rat

tp int
◦, x:rat ` 3 : rat

tp +
◦, x:rat ` x +3 : rat

In an implementation, the failure to establish a typing judgment will presumably lead to an error
message, but this is not reflected in the formal specification.

Declarations occur in expressions and expressions occur in declarations. This means that we
need another typing judgment for declarations that mutually depend on the typing judgment for
expressions. We write Γ ` d : Γ′ which we read as “declarations d extend the type environment Γ to
Γ′”. The rule for let-expressions then refers to the rule for declarations.

Γ ` d : Γ′ Γ′ ` e : t
tp let

Γ ` let d in e end : t

Note that the extended environment Γ′ that results from checking d is used as the type environment
for checking e.

Declarations d are processed in sequence. Therefore we must “thread” the typing environment
through the derivation to make earlier declarations available for later ones (as in let val x = 3

val y = x*x in y*y end). The empty declaration does not extend the environment at all.

tp empty
Γ ` ε : Γ

Γ ` d : Γ′ Γ′ ` e : t
tp dec

Γ ` (d val x=e) : (Γ′, x:t)

This concludes the set of rules for typing expressions and declarations in our language. In
lecture and recitation we discussed informally how to turn a specification of this form into an
implementation in ML. In Section 4 we add functions and recursion and appropriate typing rules.

3 Evaluating Expressions and Declarations

Next we specify the operational semantics for our small rational expression language. In the
presentation of ML, we have used a style of presentation called a small-step semantics or structural
operational semantics. In this style we think of an initial expression being rewritten step by step
until we reached a final value. This was appropriate for our goal, namely to specify ML in such a
way that it would allow us to easily prove properties of programs. As a basis for an interpreter,
such a definition is quite complicated and horrendously inefficient, so we use a different style called
big-step semantics or natural semantics.

4

In a big-step semantics, we have one main judgment that relates an expression to its value. We
write e ↪→ v and read it as “expression e evaluates to value v”. Since expressions contain variables,
this is not quite sufficient: we also need to keep track of the values that variables are bound to
in a value environment. Thus we define values and value environment. We write r for a rational
number.

Values v ::= r | true | false
Value Environment η ::= · | η, x = v

The evaluation judgment then is η ` e ↪→ v, which reads “expression e evaluates to value
v in environment η”. The usual arithmetic operations are simply defined by reference to their
mathematical counterpart. The rule ev int states that each integer evaluates to the corresponding
rational which we write as n/1.

η ` e1 ↪→ r1 η ` e2 ↪→ r2
ev +

η ` e1+e2 ↪→ r1 + r2

η ` e1 ↪→ r1 η ` e2 ↪→ r2
ev -

η ` e1-e2 ↪→ r1 − r2

η ` e1 ↪→ r1 η ` e2 ↪→ r2
ev *

η ` e1*e2 ↪→ r1 ∗ r2

η ` e1 ↪→ r1 η ` e2 ↪→ r2
ev /

η ` e1/e2 ↪→ r1/r2

ev int
η ` n ↪→ n/1

η ` e ↪→ r
ev neg

η ` -e ↪→ −r

ev true
η ` true ↪→ true

ev false
η ` false ↪→ false

η ` e1 ↪→ true η ` e2 ↪→ v
ev if true

η ` if e1 then e2 else e2 ↪→ v

η ` e1 ↪→ false η ` e3 ↪→ v
ev if false

η ` if e1 then e2 else e2 ↪→ v

We omit the obvious four rules for evaluating e1 = e2 and e1 < e2. Note that there are two
rules for evaluating conditionals. This is because the condition may evaluate to either true or false,
and we account for that in two separate rules. With these rules we can, for example, conclude that
· ` 2+3 ↪→ 5/1.

ev int
· ` 2 ↪→ 2/1

ev int
· ` 3 ↪→ 3/1

ev plus
· ` 2+3 ↪→ 5/1

Variables are looked up in the environment, retrieving their value.

ev var eq
η, x = v ` x ↪→ v

η ` x ↪→ v where x 6= x′
ev var neq

η, x′ = v′ ` x ↪→ v

Evaluating declarations will evaluate the embedded expressions in sequence and construct an
extended value environment. We write η ` d ↪→ η′ which we read as “declarations d evaluate

5

to extended environment η′ in environment η”. We appeal to this judgment when evaluating a
let-expression.

η ` d ↪→ η′ η′ ` e ↪→ v
ev let

η ` let d in e end ↪→ v

Declarations are evaluated in sequence, accumulating an extended value environment.

ev empty
η ` ε ↪→ η

η ` d ↪→ η′ η′ ` e ↪→ v
ev dec

η ` (d val x=e) ↪→ (η′, x = v)

This concludes the evaluation rules for this simple language. In order to formulate our main
theorem, we add a third judgment which gives the typing of values: ` v : t which reads
“ value v has type t”. It has only three rules.

tpv rat
` r : rat

tpv true
` true : bool

tpv false
` false : bool

We can see a strong correspondence between the typing and evaluation rules, which is no
accident. Both follow the structure of syntax closely, and they are tied together by the theorem of
Type Preservation: if ◦ ` e : t and · ` e ↪→ v then ` v : t. We will not attempt to prove this here,
but it is an important in the design of the rules for functions and recursion.

4 Functions and Closures

We now extend our language to include functions, postponing the discussion of recursive functions
until the next section. First, we extend our language of types and expressions.

Types t ::= . . . | t1 → t2

Expressions e ::= . . . | fn x => e | e1 e2

Declarations and environments do not need to change in this generalization step. In the typing rule
for functions, we need to extend the type environment by the formal parameter of the function.

Γ, x1:t1 ` e2 : t2
tp fn

Γ ` fn x1 => e2 : t1 → t2

Γ ` e1 : t2 → t1 Γ ` e2 : t2
tp app

Γ ` e1 e2 : t1

The operational semantics requires a new kind of value for functions. In the small-step semantics
for ML, we simply used the function itself as a value. Here, however, we have a problem, because
variables in the body of a function may be bound in the environment. For example, if we assume
the judgment ·, y = 3 ` fn x => x+y ↪→ fn x => x+y holds, then the judgment

· ` let y = 3 in fn x => x+y end ↪→ fn x => x+y

also holds. But this makes no sense, since the variable y on the right-hand side is not declared in
the empty environment. Therefore, type preservation is violated, since

· ` let y = 3 in fn x => x+y end : rat→ rat

6

is derivable, but
· ` fn x => x+y : rat→ rat

does not hold. The way out of this dilemma is to pair up the function with its environment to form
a closure. This way, the value of a function is always a closure and carries with it the bindings for
all variables occurring in its body. A simple optimization (done in all functional compilers) is to
only carry bindings for the variables that actually occur, but as a specification the rule below is
certainly sufficient and the two can be easily seen to be equivalent. First, we extend the language
of values to include closures.

Values v ::= . . . | {η; fn x => e}

The typing rule for closures is simple, since it just refers to the typing rule for the expression and
environment contained in it.

· ` η : Γ Γ ` fn x => e : t1 → t2
tpv closure

` {η; fn x => e} : t1 → t2

Evaluation for functions immediately creates a closure. Applying a function unpacks the closure
and extends the environment η′ contained in it by binding the formal parameter x to the argument
value v2.

ev fn
η ` fn x => e ↪→ {η; fn x => e}

η ` e1 ↪→ {η′; fn x => e′1} η ` e2 ↪→ v2 η′, x = v2 ` e′1 ↪→ v
ev app

η ` e1 e2 ↪→ v

5 Recursion

Adding recursion can be accomplished either be adding a recursive expression or a recursive dec-
laration to our language. Here, we will explore adding a recursive declaration and corresponding
recursive environments. This new declaration corresponds to the val rec declaration of ML, except
that, for the sake of simplicity, we do not restrict the expression to be a function.

Declarations d ::= . . . | rec x=e

For example the function p(n) = 2n for natural numbers n could be declared and then used to
calculate 210 as follows.

let

rec p = fn n => if n = 0 then 1 else 2 * p (n-1)

in

p 10

end

Declarations evaluate to value environments, so we must have a form of recursive binding which
we write as η, rec x = e. Values themselves do not change (since expressions do not change).

Value Environments η ::= . . . | η, rec x = e

7

The change the the typing rules is straightforward. We just have to remember that the variable
that is declared recursively may occur in the expression and must therefore be added to its type
environment.

Γ ` d : Γ′ Γ′, x:t ` e : t
tp rec

Γ ` d rec x=e : Γ′, x:t

When a recursive declaration is evaluated, we return immediately, simply extending the value
environment with a recursive binding. When a variable declared in this way is encountered during
evaluation, we need to “unroll” the recursion to obtain a value. This is achieved by evaluating the
expression the identifier is bound to recursively.

η ` d ↪→ η′
ev rec

η ` (d rec x=e) ↪→ (η′, rec x = e)

η, rec x = e ` e ↪→ v
ev recvar eq

η, rec x = e ` x ↪→ v

η ` x ↪→ v where x 6= x′
ev recvar neg

η, rec x′ = e′ ` x ↪→ v

You should work through the example function p above to make sure you understand how
functions, closures, and recursion work together to produce the correct answer.

8

