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1 Introduction

These notes are intended as a “rough and ready” guide to grammars and parsing. The theoretical
foundations required for a thorough treatment of the subject are developed in the Formal Languages,
Automata, and Computability course. The construction of parsers for programming languages
using more advanced techniques than are discussed here is considered in detail in the Compiler
Construction course.

Parsing is the determination of the structure of a sentence according to the rules of grammar.
In elementary school we learn the parts of speech and learn to analyze sentences into constituent
parts such as subject, predicate, direct object, and so forth. Of course it is difficult to say precisely
what are the rules of grammar for English (or other human languages), but we nevertheless find
this kind of grammatical analysis useful.

In an effort to give substance to the informal idea of grammar and, more importantly, to give
a plausible explanation of how people learn languages, Noam Chomsky introduced the notion of a
formal grammar. Chomsky considered several different forms of grammars with different expressive
power. Roughly speaking, a grammar consists of a series of rules for forming sentence fragments
that, when used in combination, determine the set of well-formed (grammatical) sentences. We
will be concerned here only with one, particularly useful form of grammar, called a context-free
grammar. The idea of a context-free grammar is that the rules are specified to hold independently
of the context in which they are applied. This is clearly limits the expressive power of the formalism,
but is nevertheless powerful enough to be useful, especially with computer languages. To illustrate
the limitations of the formalism, Chomsky gave the now-famous sentence “Colorless green ideas
sleep furiously.” This sentence is grammatical according to some (fairly obvious) context-free rules:
it has a subject and a predicate, with the subject modified by two adjectives and the predicate by
an adverb. It is debatable whether it is “really” grammatical, precisely because we’re uncertain
exactly what is the boundary between that which is grammatical and that which is meaningful.

We will dodge these questions by avoiding consideration of interpreted languages (those with
meaning), and instead focus on the mathematical notion of a formal language, which is just a set
of strings over a specified alphabet. A formal language has no intended meaning, so we avoid
questions like those suggested by Chomsky’s example.!

'He has given many others. For example, the two sentences “Fruit flies like a banana.” and “Time flies like an
arrow.” are superficially very similar, differing only by two noun-noun replacements, yet their “deep structure” is
clearly very different!



2 Context-Free Grammars

Let us fix an alphabet ¥ of letters. Recall that ¥* is the set of strings over the alphabet ¥. In
the terminology of formal grammars the letters of the alphabet are called terminal symbols or just
terminals for short, and a string of terminals is called a sentence. A context-free grammar consists
of an alphabet X, a set V' of non-terminals or variables, together with a set P of rules or productions
of the form

A=«

where A is a non-terminal and « is any sequence of terminals and non-terminals (called a sentential
form). We distinguish a particular non-terminal S € V', the start symbol of the grammar. Thus a
grammar G is a four-tuple (X, V, P, S) consisting of these four items.

The significance of a grammar G is that it determines a language, L(G), defined as follows:

LG) ={wey | S="w}

That is, the language of the grammar G is the set of strings w over the alphabet ¥ such that w is
derivable from the start symbol S. The derivability relation between sentential forms is defined as
follows. First, we say that a = S iff a = a1 Aag, 8 = a1 a g, and A — « is a rule of the grammar
G. In other words, 3 may be derived from « by “expanding” one non-terminal from « by one rule
of the grammar G. The relation o =* 3 is defined to hold iff 5 may be derived from « in zero or
more derivation steps.

Example 1 Let G be the following grammar over the alphabet ¥ = {a,b }:?

S — ¢
S — aSa
S — bSbh

It is easy to see that L(G) consists of strings of the form ww®, where w? is the reverse of w. For
example,

S aSa
abSba
abaSaba

abaaba

e

To prove that L(G) = {ww® | w € £*} for the above grammar G requires that we establish
two containments. Suppose that z € L(G) — that is, S =* x. We are to show that x = ww’ for
some w € 3*. We proceed by induction on the length of the derivation sequence, which must be of
length at least 1 since x is a string and S is a non-terminal. In the case of a one-step derivation,
we must have x = €, which is trivially of the required form. Otherwise the derivation is of length
n —+ 1, where n > 1. The derivation must look like this:

S = aSa
=*

2The set of non-terminals is effectively specified by the notation conventions in the rules. In this case the only
non-terminal is .S, which we implicitly take to be the start symbol.



or like this:

S = bShb
=*

We consider the first case; the second is handled similarly. Clearly x must have the form aya,
where S =* y by a derivation of length n. Inductively, y has the form uu® for some u, and hence
z = auua. Taking w = au completes the proof.

Now suppose that z € {ww® | w € £*}. We are to show that z € L(G), i.e., that S =* .
We proceed by induction on the length of w. If w has length 0, then x = w = ¢, and we see that
S =* €. Otherwise w = au, and w? = ufq or w = bu and wf = ub. In the former case we have
inductively that S =* uu®, and hence S = auufa. The latter case is analogous. This completes
the proof.

Exercise 2 Consider the grammar G with rules

S = ¢
S = (5)S

over the alphabet ¥ = {(,)}. Prove that L(G) consists of precisely the strings of well-balanced
parentheses. Warning: the argument is fairly tricky!

A word about notation. In computer science contexts we often see context-free grammars
presented in BNF' (Backus-Naur Form). For example, a language of arithmetic expressions might
be defined as follows:

(expr) := (number) | (expr) -+ (expr) | (expr)— (expr)
(number) := (digit)(digits)
(digits) == €| (digit)(digits)

(digit) == 0] ... |9

where the non-terminals are bracketed and the terminals are not.

3 Parsing

The parsing problem for a grammar G is to determine whether or not w € L(G) for a given string w
over the alphabet of the grammar. There is a polynomial (in fact, cubic) time algorithm that solves
the parsing problem for an arbitrary grammar, but it is only rarely used in practice. The reason is
that in typical situations restricted forms of context-free grammars admitting more efficient (linear
time) parsers are sufficient. We will briefly consider two common approaches used in hand-written
parsers, called operator precedence and recursive descent parsing. It should be mentioned that
in most cases parsers are not written by hand, but rather are automatically generated from a
specification of the grammar. Examples of such systems are Yacc and Bison, available on most
Unix platforms, which are based on what are called LR grammars.

3.1 Operator Precedence Parsing

Operator precedence parsing is designed to deal with infix operators of varying precedences. The
motivating example is the language of arithmetic expressions over the operators +,—,x, and /.
According to the standard conventions, the expression 3 + 6 * 9 — 4 is to be read as (3 + (6 *



9)) — 4 since multiplication “takes precedence” over addition and subtraction. Left-associativity of
addition corresponds to addition yielding precedence to itself (!) and subtraction, and, conversely,
subtraction yielding precedence to itself and addition. Unary minus is handled by assigning it
highest precedence, so that 4 — —3 is parsed as 4 — (—3).

The grammar of arithmetic expressions that we shall consider is defined as follows:

E - n|-E|E+E|E—E|E+E | EJE

where n stands for any number. Notice that, as written, this grammar is ambiguous in the sense
that a given string may be derived in several different ways. In particular, we may derive the string
3+ 4 x5 in at least two different ways, corresponding to whether we regard multiplication to take
precedence over addition:

F = E+FE
3+ F
3+ExFE
3+4xFE
34+4%5

S

ExFE
E+ExE
3+ExE
3+4xFE
34+4%5

R

The first derivation corresponds to the reading (34 (4%5)), the second to ((3+4)x5). Of course the
first is the “intended” reading according to the usual rules of precedence. Note that both derivations
are leftmost derivations in the sense that at each step the leftmost non-terminal is expanded by
a rule of the grammar. We have exhibited two distinct leftmost derivations, which is the proper
criterion for proving that the grammar is ambiguous. Even unambiguous grammars may admit
distinct leftmost and rightmost (defined obviously) derivations of a given sentence.

Given a string w over the alphabet {n,+,—,%,/ | n € N}, we would like to determine (a)
whether or not it is well-formed according to the grammar of arithmetical expressions, and (b)
parse it according to the usual rules of precedence to determine its meaning unambiguously. The
parse will be represented by translating the expression from the concrete syntax specified by the
grammar to the abstract syntaz specified by the following ML datatype:?

datatype expr =
Int of int
| Plus of expr * expr
| Minus of expr * expr
| Times of expr * expr
| Divide of expr * expr
Thus 3 + 4 %5 would be translated to the ML value Plus(Int 3, Times (Int 4, Int 5)), rather
than as Times (Plus(Int 3, Int 4), Int 5).
How is this achieved? The basic idea is simple: scan the string from left-to-right, translating as
we go. The fundamental problem is that we cannot always decide immediately when to translate.

3Since the abstract syntax captures the structure of the parse, the translation into abstract syntax is sometimes
called a parse tree for the given string. This terminology is rapidly becoming obsolete.



Consider the strings t =3+ 4*5and y =344+ 5. As we scan from left-to-right, we encounter
the sub-expression 3 + 4, but we cannot determine whether to translate this to Plus(Int 3, Int
4) until we see the next operator. In the case of the string x, the right decision is not to translate
since the next operator is a multiplication which “steals” the 4, the right-hand argument to the
addition being 4*5. On the other hand in the case of the string y the right decision is to translate
so that the left-hand argument of the second addition is Plus(Int 3, Int 4).

The solution is to defer decisions as long as possible. We achieve this by maintaining a stack of
terminals and non-terminals representing a partially-translated sentential form. As we scan from
left to right we have two decisions to make based on each character of the input:*

Shift Push the next item onto the stack, deferring translation until further context is determined.

Reduce Replace the top several elements of the stack by their translation according to some rule
of the grammar.

Consider again the string x given above. We begin by shifting 3, 4+, and 4 onto the stack since no
decision can be made. We then encounter the *, and must decide whether to shift or reduce. The
decision is made based on precedence. Since * takes precedence over +, we shift * onto the stack,
then shift 4 as well. At this point we encounter the end of the expression, which causes us to pop
the stack by successive reductions. Working backwards, we reduce [3, +, 4, *, 5] to [3, 4+, 4% 5], then
reduce again to [3 + (4 = 5)], and yield this expression as result (translated into a value of type
expr).

For the sake of contrast, consider the expression y given above. We begin as before, shifting
3, +, and 4 onto the stack. Since + yields precedence to itself, this time we reduce the stack to
[3 + 4] before shifting * and 5 to obtain the stack [3 + 4, %, 5], which is then reduced to [(3+4) x 5],
completing the parse.

The operator precedence method can be generalized to admit more operators with varying prece-
dences by following the same pattern of reasoning. We may also consider explicit parenthesization
by treating each parenthesized expression as a situation unto itself — the expression (3 +4) x5 is
unambiguous as written, and should not be re-parsed as 3+ (4 x5)! The “trick” is to save the stack
temporarily while processing the parenthesized expression, then restoring when that sub-parse is
complete.

A complete operator-precedence parser for a language of arithmetic expressions is given in the
course directory. Please study it carefully! A number of instructive programming techniques are
introduced there. Note in particular how the stack elements are represented using higher-order
functions to capture pending translation decisions.

3.2 Recursive Descent Parsing

Another common method for writing parsers by hand is called recursive descent because it proceeds
by a straightforward inductive analysis of the grammar. The difficulty is that the method doesn’t
always work: only some grammars are amenable to treatment in this way. However, in practice,
most languages can be described by a suitable grammar, and hence the method is widely used.
Here is the general idea. We attempt to construct a leftmost derivation of the candidate string
by a left-to-right scan using one symbol of look-ahead.? By “one symbol of lookahead” we mean

*We ignore error checking for the time being.

"Hence the name “LL(1)” for grammars that are amenable to such treatment. LR(1) grammars are those that
admit parsing by construction of a rightmost derivation based on a left-to-right scan of the input using at most one
symbol of lookahead.



that we decide which rule to apply at each step based solely on the next character of input; no
decisions are deferred as they were in the case of operator-precedence parsing. It should be obvious
that this method doesn’t always work. In particular, the grammar for arithmetic expressions given
above is not suitable for this kind of approach. Given the expression 3 + 4 * 5, and starting with
the non-terminal F/, we cannot determine based solely on seeing 3 whether to expand E to E + FE
or E x . As we observed earlier, there are two distinct leftmost parses for this expression in the
arithmetic expression grammar.

You might reasonably suppose that we’re out of luck. But in fact we can define another grammar
for the same language that admits a recursive descent parse. We present a suitable grammar in
stages.

First, we layer the grammar to capture the rules of precedence:

E - T|T+E|T-FE
T — F|F«xT | F/T
F — n

The non-terminals E, T, and F stand for “expression”, “term”, and “factor”, respectively. The
layering of the grammar resolves the precedences. In particular, observe that the string 3 +4 x5
has precisely one leftmost derivation according to this grammar:

EFE = T+FE
F+FE
3+ FE
3+ExE
3+4xFE
3+4x%x5

Ly dy

Notice that this derivation corresponds to the intended reading since the outermost structure is an
addition whose right-hand operand is a multiplication.

Exercise 3 Prove that the two grammars determine the same language. Obviously the language of
the “layered” grammar is contained in the language of the original grammar (why?). Conversely,
given any derivation in the original grammar, we can re-interpret it as a derivation in the layered
grammar by choosing non-terminals appropriately. Make this argument precise.

Next, we “left factor” the grammar by extracting common prefixes of right-hand sides of rules
for a given non-terminal. This results in the following grammar:

E — TF

E' - 4E | —-FE | ¢
T — FT'

T — T | T |e€
F — n

At this point the grammar is suitable for recursive-descent parsing. Here is a derivation of the
string 3 + 4 * 5 once again, using the revised grammar. Notice that each step is either forced (no



choice) or is determined by the next symbol of input:

E = TF o3 +4x%x5
= FT'FE o3 +4x%x5
= 3T'FE 3e+4 %5
= 3F 3e+4 %5
= 3+ F 3+ edx5
= 3+TEFE 3+ e4d x5
= 3+FT'FE 3+ e4d x5
= 3 +4T'FE' 3+4ex%b
= 34+4xTEFE 3+ 4xeb
= 34+4«FT'E 3+4xeh
= 34+4x5T'E" 34+4%b5e
= 3 +4x5T 3+4%5e
= 3+4x5 3+4x%be

Study this derivation carefully, and be sure you see how each step is determined.

Exercise 4 FExtend the language to include unary minus and parenthesized expressions. Give a
layered and left-factored grammar for the extended language. Exhibit a derivation of 3 —(4 +5).

There are a few “gotchas” to watch out for when defining grammars for recursive descent
parsing. One is that “left recursive” rules must be avoided. Consider the following grammar for
sequences of digits:

N — €| Nd

where d is a single digit. If we attempt to use this grammar to construct a leftmost derivation for
a non-empty string of digits, we go into an infinite loop endlessly expanding the leftmost N, and
never making any progress through the input! The following right-recursive grammar accepts the
same language, but avoids the problem:

N — €e|dN

Now we absorb digits one-by-one until we reach the end of the sequence.
Another trouble spot is that several rules may share a common prefix. For example, consider
the following grammar of statements in an imperative programming language:

S — if EthenS
S — if EFthenSelseS

where E derives some unspecified set of expressions. The intention, of course, is to express the
idea that the else clause of a conditional statement is optional. Yet consider how we would write
a recursive-descent parser for this grammar. Upon seeing if, we don’t know whether to apply the
first or the second rule — that is, do we expect a matching else or not? What to do? First, by
left-factoring we arrive at the following grammar:

S — if EthenS S’
S = €
S’ — elseS



This pushes the problem to the last possible moment: having seen if e then s, we must now decide
whether to expect an else or not. But consider the sentence

if ethenif ¢/ thenselses

To which if does the else belong? That is, do we read this statement as:
if ethen (if ¢’ thenselses’)

or as
if ethen (if €/ thens) elses’?

The grammar itself does not settle this question. The usual approach is to adopt a fixed convention
(the first is the typical interpretation), and to enforce it by ad hoc means — if there is an else,
then it “belongs to” the most recent if statement.

Designing grammars for recursive-descent parsing is usually fairly intuitive. If you're interested,
a completely rigorous account of LL(1) grammars can be found in any textbook on formal language
theory or any compiler construction textbook.

A complete recursive-descent parser for the language of arithmetic expressions appears in the
course directory.



