
4.6 Recursive Types 105

4.6 Recursive Types

The language so far lacks basic data types, such as natural numbers, integers,
lists, trees, etc. Moreover, except for finitary ones such as booleans, they are
not definable with the mechanism at our disposal so far. At this point we can
follow two paths: one is to define each new data type in the same way we defined
the logical connectives, that is, by introduction and elimination rules, carefully
checking their local soundness and completeness. The other is to enrich the
language with a general mechanism for defining such new types. Again, this
can be done in different ways, using either inductive types which allow us to
maintain a clean connection between propositions and types, or recursive types
which are more general, but break the correspondence to logic. Since we are
mostly interested in programming here, we chose the latter path.

Recall that we defined the booleans as 1 ⊕ 1. It is easy to show by the
definition of values, that there are exactly two values of this type, to which we
can arbitrarily assign true and false. A finite type with n values can be defined
as the disjoint sum of n observable singleton types, 1 ⊕ · · · ⊕ 1. The natural
numbers would be 1⊕ 1⊕ · · ·, except that this type is infinite. We can express
it finitely as a recursive type µα. 1 ⊕ α. Intuitively, the meaning of this type
should be invariant under unrolling of the recursion. That is,

nat = µα. 1 ⊕ α
∼= [(µα. 1⊕ α)/α]1⊕ α
= 1⊕ µα. 1⊕ α
= 1⊕ nat

which is the expected recursive definition for the type of natural numbers.
In functional languages such as ML or Haskell, recursive type definitions are

not directly available, but the results of elaborating syntactically more pleaseant
definitions. In addition, recursive type definitions are generative, that is, they
generate new constructors and types every time they are invoked. This is of
great practical value, but the underlying type theory can be seen as simple
recursive types combined with a mechanism for generativity. Here, we will only
treat the issue of recursive types.

Even though recursive types do not admit a logical interpretation as propo-
sitions, we can still define a term calculus using introduction and elimination
rules, including local reduction and expansions. In order maintain the property
that a term has a unique type, we annotate the introduction constant fold with
the recursive type itself.

Γ; ∆ `M : [µα. A/α]A
µI

Γ; ∆ ` foldµα. AM : µα. A

Γ; ∆ `M : µα. A
µE

Γ; ∆ ` unfoldM : [µα. A/α]A

The local reduction and expansions, expressed on the terms.

unfold foldµα. AM −→β M

M : µα. A −→η foldµα. A (unfoldM)

Draft of March 10, 1998

106 Linear λ-Calculus

It is easy to see that uniquess of types and subject reduction remain valid
properties (see Exercise 4.11). There are also formulation of recursive types
where the term M in the premiss and conclusion is the same, that is, there
are no explicit constructor and destructors for recursive types. This leads to
more concise programs, but significantly more complicated type-checking (see
Exercise 4.12).

We would like recursive types to represent data types. Therefore the values
of recursive type must be of the form foldµα. A v for values v—otherwise data
values would not be observable.

M Value
µval

foldµα. AM Value

M ↪→ v
µIv

foldµα. AM ↪→ foldµα. A v

M ↪→ foldµα. A v
µEv

unfoldM ↪→ v

In order to write interesting programs simply, it is useful to have a general
recursion operator fixu:A. M at the level of terms. It is not associated with
an type constructor and simply unrolls its definition once when executed. In
the typing rule we have to be careful: since the number on unrollings generally
unpredictable, no linear variables are permitted to occur free in the body of
a recursive definition. Moreover, the recursive function itself may be called
arbitrarily many times—one of the characteristics of recursion. Therefore its
uses are unrestricted.

(Γ, u:A); · `M : A
fix

Γ; · ` fixu:A. M : A

The operator does not introduce any new values, and one new evaluation rules
which unrolls the recursion.

[fixu:A. M/u]M ↪→ v
fixv

fixu:A. M ↪→ v

In order to guarantee subject reduction, the type of whole expression, the body
M of the fixpoint expression, and the bound variable u must all have the same
type A. This is enforced in the typing rules.

We now consider a few examples of recursive types and some example pro-
grams.

Natural Numbers.

nat = µα. 1⊕ α
zero : nat

= foldnat (inlnat ?)
succ : nat(nat

= λ̂x:nat. foldnat (inr1 x)

Draft of March 10, 1998

4.6 Recursive Types 107

With this definition, the addition function for natural numbers is linear in both
argument.

plus : nat(nat(nat
= fix p:nat(nat(nat.

λ̂x:nat. λ̂y:nat. case unfoldx
of inl ?⇒ y

| inrx′ ⇒ succˆ(pˆx′ˆy)

It is easy to ascertain that this definition is well-typed: x occurs as the case
subject, y in both branches, and x′ in the recursive call to p. On the other hand,
the natural definition for multiplication is not linear, since the second argument
is used twice in one branch of the case statement and not at all in the other.

mult : nat(nat→ nat
= fixm:nat(nat→ nat

λ̂x:nat. λy:nat. case unfoldx
of inl ?⇒ zero

| inrx′ ⇒ plusˆ(mˆx′ y)ˆy

Interestingly, there is also a linear definition of mult (see Exercise 4.13), but its
operational behavior is quite different. This is because we can explicitly copy
and delete natural numbers, and even make them available in an unrestricted
way.

copy : nat(nat⊗ nat
= fix c:nat(nat⊗ nat

λ̂x:nat. case unfoldx

of inl ?⇒ zero ⊗ zero

| inrx′ ⇒ let x′1 ⊗ x′2 = cˆx′ in (succˆx′1) ⊗ (succˆx′2)
delete : nat(1

= fix d:nat(1

λ̂x:nat. case unfoldx
of inl ?⇒ 1

| inrx′ ⇒ let ? = dˆx′ in 1
promote : nat(!nat

= fix p:nat(!nat

λ̂x:nat. case unfoldx
of inl ?⇒ !zero

| inrx′ ⇒ let !u′ = pˆx′ in !(succ u′)

Lazy Natural Numbers. Lazy natural numbers are a simple example of lazy
data types which contain unevaluated expressions. Lazy data types are useful
in applications with potentially infinite data such as streams. We encode such

Draft of March 10, 1998

108 Linear λ-Calculus

lazy data types by using the !A type constructor.

lnat = µα. !(1⊕ α)
lzero : lnat

= foldlnat ! (inllnat ?)
lsucc : lnat→ lnat

= λu:lnat. foldlnat ! (inr1 u)

There is also a linear version of successor of type, lnat(lnat, but it is not
as natural since it evaluates its argument just to build another lazy natural
number.

lsucc′ : lnat(lnat

= λ̂x:lnat. let !u = unfoldx in foldlnat (! inr1 (foldlnat (!u)))

The “infinite” number number ω can be defined by using the fixpoint operator.
We can either use lsucc as defined above, or define it directly.

ω : lnat
= fixu:lnat. lsucc u
∼= fixu:lnat. foldlnat ! (inr1 u)

Note that lazy natural numbers are not directly observable (except for the
foldlnat), so we have to decompose and examine the structure of a lazy natural
number successor by successor, or we can convert it to an observable natural
number (which might not terminate).

toNat : lnat(nat
= fix t:lnat(nat

λ̂x:lnat. case unfoldx

of !inllnat ?⇒ zero

| !inr1 x′⇒ succˆ(tˆx′)

Lists. To avoid issues of polymorphism, we define a family of data types listA
for an arbitrary type A.

listA = µα. 1⊕ (A ⊗ α)
nilA : listA

= foldlistA(inllistA ?)
consA : A⊗ listA(listA

= λ̂p:A ⊗ listA. foldlistA(inr1 p)

We can easily program simple functions such as append and reverse which are
linear in their arguments. We show here reverse; for other examples see Exer-
cise 4.14. we define an auxiliary tail-recursive function rev which moves element

Draft of March 10, 1998

4.6 Recursive Types 109

from it first argument to its second.

revA : listA(listA(listA
= fix r:listA(listA(listA

λ̂l:listA. λ̂k:listA.
case unfold l

of inlA⊗listA ?⇒ k

| inr1 (x⊗ l′)⇒ rˆl′ˆ(consA (x⊗ k))
reverseA : listA(listA

= λ̂l:listA. revˆlˆnilA

To make definitions like this a bit easier, we can also define a case for lists, in
analogy with the conditional for booleans. It is a family indexed by the type of
list elements A and the type of the result of the conditional C.

listCaseA,C : listA((CN(A ⊗ listA(C))(C

= λ̂l:listA. λ̂n:CN(A ⊗ listA(C).
case unfoldl

of inlA⊗listA ?⇒ fstn

| inr1 p⇒ (snd n)ˆp

Lazy Lists. There are various forms of lazy lists, depending of which evalua-
tion is postponed.

llist1A = µα. !(1⊕ (A⊗ α)). This is perhaps the canonical lazy lists, in which
we can observe neither head nor tail.

llist2A = µα. 1⊕ !(A⊗ α). Here we can observe directly if the list is empty or
not, but not the head or tail which remains unevaluated.

llist3A = µα. 1⊕ (A⊗ !α). Here we can observe directly if the list is empty or
not, and the head of the list is non-empty. However, we cannot see the
tail.

llist4A = µα. 1⊕ (!A⊗ α). Here the list is always eager, but the elements are
lazy. This is the same as list!A.

llist5A = µα. 1⊕ (ANα). Here we can see if the list is empty or not, but we can
access only either the head or tail of list, but not both.

infStreamA = µα. !(A ⊗ α). This is the type of infinite streams, that is, lazy
lists with no nil constructor.

Functions such as append, map, etc. can also be written for lazy lists (see
Exercise 4.15).

Draft of March 10, 1998

110 Linear λ-Calculus

Other types, such as trees of various kinds, are also easily represented using
similar ideas. However, the recursive types (even without the presence of the
fixpoint operator on terms) introduce terms which have no normal form. In the
pure, untyped λ-calculus, the classical examples of a term with no normal form
is (λx. x x) (λx. x x) which β-reduces to itself in one step. In the our typed
λ-calculus (linear or intuitionistic) this cannot be assigned a type, because x is
used as an argument to itself. However, with recursive types (and the fold and
unfold constructors) we can give a type to a version of this term which β-reduces
to itself in two steps.

Ω = µα. α→ α
ω : Ω→ Ω

= λx:Ω. (unfoldx)x

Then
ω (foldΩ ω)

−→β (unfold (foldΩ ω)) (foldΩ ω)

−→β ω (foldΩ ω).

At teach step we applied the only possible β-reduction and therefore the term
can have no normal form. An attempt to evaluate this term will also fail,
resulting in an infinite regression (see Exercise 4.16).

4.7 Termination

As the example at the end of the previous section shows, unrestricted recursive
types destroy the normalization property. This also means it is impossible to
give all recursive types a logical interpretation. When we examine the inference
rules we notice that recursive types are impredicative: the binder µα in µα. A
ranges over the whole type. This means in the introduction rule, the type
in the premiss [µα. A/α]A generally will be larger than the type µα. A in
the conclusion. That alone is not responsible for non-termination: there are
other type disciplines such as the polymorphic λ-calculus which retain a logical
interpretation and termination, yet are impredicative.

In this section we focus on the property that all well-typed terms in the
linear λ-calculus without recursive types and fixpoint operators evaluate to a
value. This is related to the normalization theorem for natural deductions
(Theorem 2.19): if Γ; ∆ ` A then Γ; ∆ ` A ↑. We proved this by a rather
circuitous route: unrestricted natural deductions can be translated to sequent
derivations with cut from which we can eliminate cut and translate the result
cut-free derivation back to a noraml natural deduction.

Here, we prove directly that every term evaluates using the proof technique
of logical relations also called Tait’s method. Because of the importance of this
technique, we spend some time motivating its form. Our ultimate goal is to
prove:

If ·; · `M : A then M ↪→ v for some value v.

Draft of March 10, 1998

4.7 Termination 111

The first natural attempt would be to prove this by induction on the typing
derivation. Surprisingly, case for(I works, even though we cannot apply the
inductive hypothesis, since every linear λ-abstraction immediately evaluates to
itself.

In the case for (E, however, we find that we cannot complete the proof.
Let us examine why.

Case: D =

D1

·; · `M1 : A2(A1

D2

·; · `M2 : A2

(E.
·; · `M1

ˆM2 : A1

We can make the following inferences.

M1 ↪→ v1 for some v1 By ind. hyp. on D1

v1 = λ̂w:A2. M
′
1 By type preservation and inversion

M2 ↪→ v2 for some v2 By ind. hyp. on D2

At this point we cannot proceed: we need a derivation of

[v2/w]M ′1 ↪→ v for some v

to complete the derivation of M1 M2 ↪→ v. Unfortunately, the induction hypoth-
esis does not tell us anything about [v2/w]M ′1. Basically, we need to extend it so

it makes a statement about the result of evaluation (λ̂w:A2. M
′
1, in this case).

Sticking to the case of linear application for the moment, we call a term M
“good” if it evaluates to a “good” value v. A value v is “good” if it is a function
λ̂w:A2. M

′
1 and if substituting a “good” value v2 for w in M ′1 results in a “good”

term. Note that this is not a proper definition, since to see if v is “good” we may
need to substitute any “good” value v2 into it, possibly including v itself. We
can make this definition inductive if we observe that the value v2 will be of type
A2, while the value v we are testing has type A2(A1, and that the resulting
term as type A1. That is, we can fashion a definition which is inductive on the
structure of the type. Instead of saying “good” we say M ∈ ‖A‖ and v ∈ |A|.
Still restricting ourselves to linear implication only, we define:

M ∈ ‖A‖ iff M ↪→ v and v ∈ |A|
M ∈ |A2(A1| iff M = λ̂w:A2. M1 and [v2/w]M1 ∈ ‖A1‖ for any v2 ∈ |A2|

FromM ∈ ‖A‖ we can immediately inferM ↪→ v, so when proving that ·; · `M :
A implies M ∈ ‖A‖ we do indeed have a much stronger induction hypothesis.

While the case for application now goes through, the case for linear λ-
abstraction fails, since we cannot prove the stronger property for the value.

Case: D =

D1

·;w:A2 `M1 : A1

(I.
·; · ` λ̂w:A2. M1 : A2(A1

Then λ̂w:A2. M1 ↪→ λ̂w:A2. M1 and it remains to show that for every
v2 ∈ |A2|, [v2/w]M2 ∈ ‖A1‖.

Draft of March 10, 1998

112 Linear λ-Calculus

This last statement should follow from the induction hypothesis, but presently
it is too weak since it only allows for closed terms. The generalization which
suggests itself from this case (ignoring the unrestricted context for now) is:

If ∆ ` M : A, then for any substitution θ which maps the linear
variables w:A in ∆ to values v ∈ |A|, [θ]M ∈ ‖A‖.

This generalization indeed works after we also account for the unrestricted con-
text. During evaluation we substitute values for linear variables and expressions
for unrestricted variables. Therefore, the substitutions we must consider for the
induction hypothesis have to behave accordingly.

Unrestricted Substitution η ::= · | η,M/u
Linear Substitution θ ::= · | θ, v/w

We write [η; θ]M for the simultaneous application of the substitutions η and
θ to M . For our purposes here, the values and terms in the substitutions are
always closed, but we do not need to postulate this explicitly. Instead, we only
deal with substitution satisfying the property necessary for the generalization
of the induction hypothesis.

θ ∈ |∆| iff [θ]w ∈ |A| for every w:A in ∆
η ∈ ‖Γ‖ iff [η]u ∈ ‖A‖ for every u:A in Γ

We need just one more lemma, namely that values evaluate to themselves.

Lemma 4.11 (Value Evaluation) For any value v, v ↪→ v

Proof: See Exercise 4.18. 2

Now we have all ingredients to state the main lemma in the proof of ter-
mination, the so called logical relations lemma [?]. The “logical relations” are
‖A‖ and |A|, seen as unary relations, that is, predicates, on terms and values,
respectively. They are “logical” since they are defined by induction on the struc-
ture of the type A, which corresponds to a proposition under the Curry-Howard
isomorphism.

Lemma 4.12 (Logical Relations) If Γ; ∆ ` M : A, η ∈ ‖Γ‖ and θ ∈ |∆|
then [η; θ]M ∈ ‖A‖.

Before showing the proof, we extend the definition of the logical relations to

Draft of March 10, 1998

4.7 Termination 113

all the types we have been considering.

M ∈ ‖A‖ iff M ↪→ v and v ∈ |A|
v ∈ |A2(A1| iff v = λ̂w:A2. M1 and [v2/w]M1 ∈ ‖A1‖ for any v2 ∈ |A2|
v ∈ |A1 ⊗A2| iff v = v1 ⊗ v2 where v1 ∈ |A1| and v2 ∈ |A2|

v ∈ |1| iff v = ?
v ∈ |A1NA2| iff v = 〈M1,M2〉 where M1 ∈ ‖A1‖ and M2 ∈ ‖A2‖

v ∈ |>| iff v = 〈 〉
v ∈ |A1NA2| iff either v = inlA2 v1 and v1 ∈ |A1|,

or v = inrA1 v2 and v2 ∈ |A2|
v ∈ |0| never
v ∈ |!A| iff v = !M and M ∈ ‖A‖

v ∈ |A2 → A1| iff v = λu:A2. M1 and [M2/u]M1 ∈ ‖A1‖ for any M2 ∈ ‖A2‖

These definitions are motivated directly from the form of values in the language.
One can easily see that it is indeed inductive on the structure of the type. If
we tried to add recursive types in a similar way, the proof below would still go
through, except that the definition of the logical relation would no longer be
well-founded.

Proof: (of the logical relations lemma 4.12). The proof proceeds by induction
on the structure of the typing derivation D :: (Γ; ∆ ` M : A). We show three
cases—all others are similar.

Case: D =

D1

Γ; ∆ `M1 : A2(A1

D2

Γ; ∆ `M2 : A2

(E.
Γ; ∆ `M1

ˆM2 : A1

η ∈ ‖Γ‖ by assumption
θ ∈ |∆| by assumption
[η; θ]M1 ∈ ‖A2(A1‖ by ind. hyp. on D1

E1 :: ([η; θ]M1 ↪→ v1) and v1 ∈ |A2(A1| by definition of ‖A2(A1‖
v1 = λ̂w:A1. M

′
1 and [v2/w]M ′1 ∈ ‖A1‖ for any v2 ∈ |A2| by definition of |A2(A1|

[η; θ]M2 ∈ ‖A2‖ by ind. hyp. on D2

E2 :: ([η; θ]M2 ↪→ v2) and v2 ∈ |A2| by definition of ‖A2‖
[v2/w]M ′1 ∈ ‖A1‖ since v2 ∈ |A2|
E3 :: ([v2/w]M ′1 ↪→ v) and v ∈ |A1| by definition of ‖A1‖
E :: ([η; θ](M1

ˆM2) ↪→ v) by(Ev from E1, E2, and E3
[η; θ](M1

ˆM2) ∈ ‖A1‖ by definition of ‖A1‖

Case: D =

D1

Γ; (∆, w:A2) `M1 : A1

(I.
Γ; ∆ ` λ̂w:A2. M1 : A2(A1

η ∈ ‖Γ‖ by assumption

Draft of March 10, 1998

114 Linear λ-Calculus

θ ∈ |∆| by assumption

E :: ([η; θ](λ̂w:A2. M1) ↪→ [η; θ](λ̂w:A2. M1)) by (Iv
v2 ∈ |A2| assumption
(θ, v2/w) ∈ |∆, w:A2| by definition of |∆|
[η; (θ, v2/w)]M1 ∈ ‖A1‖ by ind. hyp. on D1

[v2/w]([η; (θ, w/w)]M1) ∈ ‖A1‖ by properties of substitution

(λ̂w:A2. [η; (θ, w/w)]M1) ∈ |A2(A1| by definition of |A2(A1|
[η; θ](λ̂w:A2. M1) ∈ |A2(A1| by properties of substitution

[η; θ](λ̂w:A2. M1) ∈ ‖A2(A1‖ by definition of ‖A2(A1‖

Case: D = w.
Γ; (·, w:A) ` w : A

θ ∈ |·, w:A| by assumption
[θ]w ∈ |A| by definition of |·, w:A|
E :: ([η; θ]w ↪→ [η; θ]w) by Lemma 4.11
[η; θ]w ∈ ‖A‖ by definition of ‖A‖

2

The termination theorem follows directly from the logical relations lemma.
Note that the theorem excludes recursive types and the fixpoint operator by a
general assumption for this section.

Theorem 4.13 (Termination) If ·; · `M : A then M ↪→ v for some v.

Proof: We have · ∈ ‖ · ‖ and · ∈ | · | since the conditions are vacuously satisfied.
Therefore, by the logical relations lemma 4.12, [·; ·]M ∈ ‖A‖. By the definition
of ‖A‖ and the observation that [·; ·]M = M , we conclude that M ↪→ v for some
v. 2

4.8 Exercises

Exercise 4.1 Prove that if Γ; ∆ `M : A and Γ; ∆ `M : A′ then A = A′.

Exercise 4.2 A function in a functional programming language is called strict
if it is guaranteed to use its argument. Strictness is an important concept in the
implementation of lazy functional languages, since a strict function can evaluate
its argument eagerly, avoiding the overhead of postponing its evaluation and
later memoizing its result.

In this exercise we design a λ-calculus suitable as the core of a functional
language which makes strictness explicit at the level of types. Your calculus
should contain an unrestricted function type A → B, a strict function type
A � B, a vacuous function type A 99K B, a full complement of operators
refining product and disjoint sum types as for the linear λ-calculus, and a modal
operator to internalize the notion of closed term as in the linear λ-calculus. Your
calculus should not contain quantifiers.

Draft of March 10, 1998

4.8 Exercises 115

1. Show the introduction and elimination rules for all types, including their
proof terms.

2. Given the reduction and expansions on the proof terms.

3. State (without proof) the valid substitution principles.

4. If possible, give a translation from types and terms in the strict λ-calculus
to types and terms in the linear λ-calculus such that a strict term is well-
typed if and only if its linear translation is well-typed (in an appropriately
translated context).

5. Either sketch the correctness proof for your translation in each direction
by giving the generalization (if necessary) and a few representative cases,
or give an informal argument why such a translation is not possible.

Exercise 4.3 Give an example which shows that the substitution [M/w]N
must be capture-avoiding in order to be meaningful. Variable capture is a sit-
uation where a bound variable w′ in N occurs free in M , and w occurs in the
scope of w′. A similar definition applies to unrestricted variables.

Exercise 4.4 Give a counterexample to the conjecture that if M −→β M
′ and

Γ; ∆ ` M ′ : A then Γ; ∆ ` M : A. Also, either prove or find a counterexample
to the claim that if M −→η M

′ and Γ; ∆ `M ′ : A then Γ; ∆ `M : A.

Exercise 4.5 The proof term assignment for sequent calculus identifies many
distinct derivations, mapping them to the same natural deduction proof terms.
Design an alternative system of proof terms from which the sequent derivation
can be reconstructed uniquely (up to weakening of unrestricted hypotheses and
absorption of linear hypotheses in the >R rule).

1. Write out the term assignment rules for all propositional connectives.

2. Give a calculus of reductions which corresponds to the initial and principal
reductions in the proof of admissibility of cut.

3. Show the reduction rule for the dereliction cut.

4. Show the reduction rules for the left and right commutative cuts.

5. Sketch the proof of the subject reduction properties for your reduction
rules, giving a few critical cases.

6. Write a translation judgment S =⇒ M from faithful sequent calculus
terms to natural deduction terms.

7. Sketch the proof of type preservation for your translation, showing a few
critical cases.

Exercise 4.6 Supply the missing rules for ⊕E in the definition of the judg-
ment Γ; ∆I \ ∆O `i M : A and show the corresponding cases in the proof of
Lemma 4.5.

Draft of March 10, 1998

116 Linear λ-Calculus

Exercise 4.7 In this exercise we explore the syntactic expansion of extended
case expressions of the form case M of m.

1. Define a judgment which checks if an extended case expression is valid.
This is likely to require some auxiliary judgments. You must verify that
the cases are exhaustive, circumscribe the legal patterns, and check that
the overall expression is linearly well-typed.

2. Define a judgment which relates an extended case expression to its ex-
pansion in terms of the primitive let , case , and abort constructs in the
linear λ-calculus.

3. Prove that an extended case expression which is valid according to your
criteria can be expanded to a well-typed linear λ-term.

4. Define an operational semantics directly on extended case expressions.

5. Prove that your direct operational semantics is correct on valid patterns
with respect to the translational semantics from questions 2.

Exercise 4.8 Define the judgment M −→∗β M ′ via inference rules. The rules
should directly express that it is the congruent, reflexive and transitive closure
of the β-reduction judgment M −→β M

′. Then prove the generalized subject
reduction theorem 4.7 for your judgment. You do not need to show all cases,
but you should carefully state your induction hypothesis in sufficient generality
and give a few critical parts of the proof.

Exercise 4.9 Define weak β-reduction as allows simple β-reduction under ⊗,
inl, and inr constructs and in all components of the elimination form. Show
that if M weakly reduces to a value v then M ↪→ v.

Exercise 4.10 Prove type preservation (Theorem 4.9) directly by induction on
the structure of the evaluation derivation, using the substitution lemma 4.2 as
necessary, but without appeal to subject reduction.

Exercise 4.11 Prove the subject reduction and expansion properties for recur-
sive type computation rules.

Exercise 4.12 [An exercise exploring the use of type conversion
rules without explicit term constructors.]

Exercise 4.13 Define a linear multiplication function mult : nat(nat(nat
using the functions copy and delete.

Exercise 4.14 Defined the following functions on lists. Always explicitly state
the type, which should be the most natural type of the function.

1. append to append two lists.

2. concat to append all the lists in a list of lists.

Draft of March 10, 1998

4.8 Exercises 117

3. map to map a function f over the elements of a list. The result of map-
ping f over the list x1, x2, . . . , xn should be the list f(x1), f(x2), . . . f(xn),
where you should decide if the application of f to its argument should be
linear or not.

4. foldr to reduce a list by a function f . The result of folding f over a
list x1, x2, . . . xn should be the list f(x1, f(x2, . . . , f(xn, init))), where init
is an initial value given as argument to foldr. You should decide if the
application of f to its argument should be linear or not.

5. copy, delete, and promote.

Exercise 4.15 For one of the form of lazy lists on Page 109, define the functions
from Exercise 4.14 plus a function toList which converts the lazy to an eager list
(and may therefore not terminate if the given lazy lists is infinite). Make sure
that your functions exhibit the correct amount of laziness. For example, a map
function applied to a lazy list should not carry out any non-trivial computation
until the result is examined.

Further for your choice of lazy list, define the infinite lazy list of eager natural
numbers 0, 1, 2,

Exercise 4.16 Prove that there is no term v such that ω (foldΩ ω) ↪→ v.

Exercise 4.17 [An exercise about the definability of fixpoint oper-
ators at various type.]

Exercise 4.18 Prove Lemma 4.11 which states that all values evaluate to them-
selves.

Draft of March 10, 1998

