
Final Exam

15-816 Linear Logic
Frank Pfenning

May 8, 2012

Name: Sample Solution Andrew ID: fp

Instructions

• This exam is closed-book, closed-notes.

• You have 3 hours to complete the exam.

• There are 6 problems.

Ordered Classical Resource Forward

Logic Lin. Logic Semantics Chaining Possibility Quotations

Prob 1 Prob 2 Prob 3 Prob 4 Prob 5 Prob 6 Total

Score 50 55 40 40 50 15 250

Max 50 55 40 40 50 15 250

1

1 Ordered Logic (50 pts)

In this question we explore ordered logic programming. We have the following program load
which takes a list of elements and loads them into the ordered context.

load(cons(x, l), k)� (elem(x)� load(l, k)).
load(nil, k)� gather(k).

Both load and gather are negative atomic predicates. The intent is for gather to return a final value
k to be computed from the state created by load. What exactly is to be computed will change from
task to task.

Task 1 (5 pts). The query

load(cons(x1, cons(x2, . . . , cons(xn, nil))),K)

for elements x1, . . . , xk and a free variable K will load the context. Show the contents of the
ordered context at the point when gather(K) is called as a subgoal.

elem(x1), elem(x2), . . . , elem(xn)

In the programming tasks below we assume that forward chaining takes precedence over back-
ward chaining. In other words, we apply forward-chaining rules to quiescence before considering
backward-chaining.

Task 2 (15 pts). Define gather(k) such that it succeeds with k the reverse of the original list. Your
program should use the auxiliary positive predicate collect(l). For full credit, you should have just
one clause for gather(k) and one clause for forward chaining.

gather(k)� (collect(nil)� collect(k)).

collect(k) • elem(x)� collect(cons(x, k)).

2

Task 3 (15 pts). Define alternative gather and collect predicates such that gather(k) succeeds with
k being a subsequence of the original sequence. By subsequence we mean a list of elements in the
same order as in the original, where some elements may have been deleted. For full credit, you
should have just one clause for gather(k) and one clause for forward chaining.

gather(k)� (collect(nil)� collect(k)).

elem(x) • collect(k)� (collect(k) N collect(cons(x, k))).

Task 4 (15 pts). Define alternative gather and collect predicates such that gather(k) succeeds with
k begin an arbitrary permutation of the original sequence. For full credit, you should have just one
clause for gather(k) and one clause for forward chaining.

gather(k)� (¡collect(nil)� collect(k)).

elem(x) • collect(k)� ¡collect(cons(x, k)).

3

2 Classical Linear Logic (55 pts)

Recall that in classical linear logic, the cut and identity rules are as follows:

` Σ, A ` Σ′, A⊥

` Σ,Σ′
cutA

` A,A⊥
idA

Task 1 (5 pts). The classical A ⊗ B behaves analogously to its intuitionistic version. Show the
corresponding classical (right) rule.

` Σ, A ` Σ′, B

` Σ,Σ′, A⊗B
⊗

Task 2 (5 pts). Rather than a left rule for A⊗B, we define (A⊗B)⊥ = A⊥ OB⊥ and give a (right)
rule for O. Show this rule.

` Σ, A,B

` Σ, AOB
O

Task 3 (10 pts). Show the identity expansion for O in the classical sequent calculus.

` A⊥ ⊗B⊥, AOB
idAOB

−→E

` A⊥, A
idA

` B⊥, B
idB

` A⊥ ⊗B⊥, A,B
⊗

` A⊥ ⊗B⊥, AOB
O

4

Task 4 (15 pts). Show the cut reduction between ⊗ and O in the classical sequent calculus.

` Σ, A ` Σ′, B

` Σ,Σ′, A⊗B
⊗

` Σ′′, A⊥, B⊥

` Σ′′, A⊥ OB⊥
O

` Σ,Σ′,Σ′′
cut

−→R

` Σ′, B

` Σ, A ` Σ′′, A⊥, B⊥

` Σ,Σ′′, B⊥
cut

` Σ,Σ′,Σ′′
cut

5

Task 5 (10 pts). In classical linear logic, the exponential is defined by (!A)⊥ = ?(A⊥), the following
rules

` ?Σ, A

` ?Σ, !A
!

` Σ, A

` Σ, ?A
?

plus two additional rules. Please name them and show them.

They are weakening and contraction:

` Σ

` Σ, ?A
Weaken

` Σ, ?A, ?A

` Σ, ?A
Contract

Task 6 (10 pts). While cut elimination holds in classical linear logic, a structural induction proof of
its admissibility in the cut-free classical sequent calculus does not go through. Identify the critical
case and explain why the induction fails.

When we have a cut of !A⊥ with a contraction of ?A,

` Σ, ?A, ?A

` Σ, ?A
Contract

` Σ, !A⊥

` Σ,Σ′
cut

we can cut out one of the copies of ?A, but the resulting proof of might be larger so it is not
clear how to cut out the second copy since the cut formula remains the same.

6

3 Resource Semantics (40 pts)

In the resource semantics we track linearity through algebraic reasoning on resource expressions

Resource exprs. p ::= ε | p1 ∗ p2 | α

Task 1 (5 pts). Write out the resource equations that characterize linear logic.

p ∗ ε = ε ∗ p = p
(p ∗ q) ∗ r = p ∗ (q ∗ r)
p ∗ q = q ∗ p

Task 2 (5 pts). Recall the(R rule.

Γ, A@α ` B@p ∗ α
Γ ` A(B@p

(Rα

Task 3 (5 pts). Recall the(L rule. You may use the tethered or untethered form.

Γ, A(B@α ` A@p Γ, A(B@α,B@β ` C@q ∗ β
Γ, A(B@α ` C@p ∗ q ∗ α (Lβ

7

Strict logic has just two forms of resources: persistent ones, which can be used arbitrarily often, and
strict ones, which must be used at least once. We claim that the resource semantics with exactly
the same rules as linear logic represents strict logic if we add the law of idempotence for resource
expressions:

p ∗ p = p

Task 4 (15 pts). Prove that ` (A (A (B) ((A (B)@ε using your resource rules, where
A(B now represents a strict implication.

Omitting hypotheses that are no longer needed:

A@β ` A@β
id

A@β ` A@β
id

B@δ ` B@δ
id

A(B@γ,A@β ` B@γ ∗ β (Lδ

A(A(B@α,A@β ` B@α ∗ β ∗ β
(Lγ

A(A(B@α,A@β ` B@α ∗ β
(idempotence)

` (A(A(B)((A(B)@ε
(Rα,(Rβ

8

Task 5 (10 pts). Prove that ` B ((A (B)@ε does not hold in general in strict logic. You may
assume cut elimination and that identity can be reduced to atomic propositions.

Assume for atomic propositions a and b:

` b((a(b)@ε

By cut elimination, there must be a cut-free proof of this sequent. Besides cut, there is only one
rule matching this conclusion, and the premise must be

b@α ` a(b@α

Again, only one rule could have inferred this, with premise

b@α, a@β ` b@α ∗ β

Since a and b are atomic, this could only follow by the identity and would require

α = α ∗ β

However, for resource parameters α and β, this is not true even in the presence of idempo-
tence.

9

4 Forward Chaining (40 pts)

Consider a representation of binary numbers in ordered linear logic, where the number bn−1 · · · b0
(with b0 representing the least significant bit) is represented by the ordered context

end, bit(bn−1), . . . , bit(b0)

where each bit bi is either 0 or 1.

Task 1 (10 pts). The following ordered program increments the represented number if started with
inc added at the right end of the context. Complete the program, assuming bit, end, and inc are all
positive.

bit(0) • inc� bit(1)

bit(1) • inc� inc • bit(0)

end • inc� end • bit(1)

Task 2 (15 pts). Rewrite the above program in linear logic. We represent the number now as

end(dn), bit(dn, bn−1, dn−1), . . . , bit(d1, b0, d0)

where each bi is either 0 or 1, and the di are mutually distinct destinations. The command to
increment starting at bit i is represented as the proposition inc(di).

Write a forward chaining program to increment a number in this representation. When inc(d0)
is added to the context representing the number n, it should reach quiescence with the context
containing the represention of the number n+ 1. You may assume bit, end, and inc are positive, or
you may use a monad.

bit(d′, 0, d)⊗ inc(d)(bit(d′, 1, d)

bit(d′, 1, d)⊗ inc(d)(inc(d′)⊗ bit(d′, 0, d)

end(d)⊗ inc(d)(∃d′. end(d′)⊗ bit(d′, 1, d)

10

Task 3 (15 pts). Your program for incrementing a number is likely sequential. Write a forward-
chaining program that computes the parity of the binary number. When given a number in the
representation above, it should reach quiescence in a state with only bit(d′, 1, d) if there are an odd
number of bits 1 and bit(d′, 0, d) if there are an even number of bits 1. The destinations d and d′ are
irrelevant and may be arbitrary. Your program should admit some parallelism.

bit(d1, 0, d2)⊗ bit(d3, 0, d4)(bit(d1, 0, d4)

bit(d1, 0, d2)⊗ bit(d3, 1, d4)(bit(d1, 1, d4)

bit(d1, 1, d2)⊗ bit(d3, 1, d4)(bit(d1, 0, d4)

end(d)(bit(d, 0, d)

11

5 Possibility (50 pts)

We can introduce ?A into intuitionistic linear logic with the new judgment A poss and the follow-
ing rules:

Γ ; ∆ ` A
Γ ; ∆ ` A poss

poss

Γ ; ∆ ` A poss

Γ ; ∆ ` ?A
?R

Γ ; A ` C poss

Γ ; ?A ` C poss
?L

All the left rules as well as copy, cut and cutbang are generalized to allow a succedent of the form
C poss

Task 1 (10 pts). State the new cut rule needed, cut?.

Γ ; ∆ ` A poss Γ ; A ` C poss

Γ ; ∆ ` C poss
cut?

Task 2 (10 pts). Prove ` !(A(B)(?A(?B

A(B ; A ` A
id

A(B ; B ` B
id

A(B ; A,A(B ` B
(L

A(B ; A,A(B ` B poss
poss

A(B ; A ` B poss
copy

A(B ; ?A ` B poss
?L

A(B ; ?A ` ?B
?R

!(A(B), ?A ` ?B
!L

` !(A(B)(?A(?B
(R2

12

Task 3 (10 pts). Show the identity expansion for ?A.

?A ` ?A
id?A −→E

A ` A
id

A ` A poss
poss

?A ` A poss
?L

?A ` ?A
?R

Task 4 (5 pts). What is the polarity of ?A?

It is negative on the outside, and positive on the inside.

Task 5 (15 pts). Give focusing versions of the new rules poss, ?R and ?L.

Γ ; ∆ ` [A]

Γ ; ∆ ` A poss
poss∗

(∗) ∆ stable

Γ ; ∆ ` A poss

Γ ; ∆ ` ?A
?R

Γ ; A ` C poss

Γ ; [?A] ` C poss
?L

13

6 Quotations (15 pts)

Task 1 (15 pts).

Give a man a fish and you feed him for a day. Teach a man how to fish and you feed him for a
lifetime. – Chinese proverb

Express this quotation in linear logic, using the following vocabulary:

Types person, food

Predicates own(x, y) person x owns food y
eat(x, y) person x can eat food y
fish(x) food x is fish

Since we do not model time, think of “for a day” as “once”, and “for a lifetime” as “arbitrarily often”.

A simple solution that does not model the ownership transfer or teaching:

!((∀y:person. (∃f :food. !fish(f)⊗ own(y, f))(∃w:food. eat(y, w))
N (∀y:person. (!∃f :food. !fish(f)⊗ own(y, f))(!∃w:food. eat(y, w)))

A more complex one that does try to model ownership and teaching:

can fish(z) = !∃f :food. !fish(f)⊗ own(z, f)

!((∀x:person.∀y:person.
(∃f :food. !fish(f)⊗ own(x, f)⊗ (own(x, f)(own(y, f)))(∃w:food. eat(y, w))

N (∀x:person.∀y:person.
can fish(x)⊗ (can fish(x)(can fish(y))(!∃w:food. eat(y, w)))

14

