Final Exam

15-816 Linear Logic

Frank Pfenning
May 8, 2012

Name:

Sample Solution

Andrew ID: fp

Instructions

- This exam is closed-book, closed-notes.
- You have 3 hours to complete the exam.
- There are 6 problems.

| | Ordered
 Logic | Classical
 Lin. Logic | Resource
 Semantics | Forward
 Chaining | Possibility | Quotations |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |$|$

1 Ordered Logic (50 pts)

In this question we explore ordered logic programming. We have the following program load which takes a list of elements and loads them into the ordered context.

$$
\begin{aligned}
& \operatorname{load}(\operatorname{cons}(x, l), k) \varangle(\operatorname{elem}(x) \rightarrow \operatorname{load}(l, k)) . \\
& \operatorname{load}(\text { nil }, k) \nVdash \operatorname{gather}(k) .
\end{aligned}
$$

Both load and gather are negative atomic predicates. The intent is for gather to return a final value k to be computed from the state created by load. What exactly is to be computed will change from task to task.

Task 1 (5 pts). The query

$$
\operatorname{load}\left(\operatorname{cons}\left(x_{1}, \operatorname{cons}\left(x_{2}, \ldots, \operatorname{cons}\left(x_{n}, \operatorname{nil}\right)\right)\right), K\right)
$$

for elements x_{1}, \ldots, x_{k} and a free variable K will load the context. Show the contents of the ordered context at the point when gather (K) is called as a subgoal.

$$
\operatorname{elem}\left(x_{1}\right), \operatorname{elem}\left(x_{2}\right), \ldots, \operatorname{elem}\left(x_{n}\right)
$$

In the programming tasks below we assume that forward chaining takes precedence over backward chaining. In other words, we apply forward-chaining rules to quiescence before considering backward-chaining.

Task 2 (15 pts). Define gather (k) such that it succeeds with k the reverse of the original list. Your program should use the auxiliary positive predicate collect (l). For full credit, you should have just one clause for gather (k) and one clause for forward chaining.

```
gather }(k)\longleftrightarrow(\operatorname{collect(nil)}\longleftrightarrow\operatorname{collect}(k))
collect (k) \bullet elem (x) }->\mathrm{ collect(cons(x,k)).
```

Task 3 (15 pts). Define alternative gather and collect predicates such that gather (k) succeeds with k being a subsequence of the original sequence. By subsequence we mean a list of elements in the same order as in the original, where some elements may have been deleted. For full credit, you should have just one clause for gather (k) and one clause for forward chaining.

```
gather }(k)\longleftrightarrow(\operatorname{collect(nil)}->\mathrm{ collect }(k))
elem (x) \bullet collect (k)->(\operatorname{collect}(k)& collect (cons(x,k))).
```

Task 4 (15 pts). Define alternative gather and collect predicates such that gather (k) succeeds with k begin an arbitrary permutation of the original sequence. For full credit, you should have just one clause for gather (k) and one clause for forward chaining.

```
gather (k)}\Vdash(\mathrm{ ;collect(nil) }->\mathrm{ collect (k)).
elem(x)\bullet collect (k) ->i icollect(cons}(x,k))
```


2 Classical Linear Logic (55 pts)

Recall that in classical linear logic, the cut and identity rules are as follows:

$$
\frac{\vdash \Sigma, A \vdash \Sigma^{\prime}, A^{\perp}}{\vdash \Sigma, \Sigma^{\prime}} \operatorname{cut}_{A} \quad \overline{\vdash A, A^{\perp}} \operatorname{id}_{A}
$$

Task 1 (5 pts). The classical $A \otimes B$ behaves analogously to its intuitionistic version. Show the corresponding classical (right) rule.

$$
\frac{\vdash \Sigma, A \quad \vdash \Sigma^{\prime}, B}{\vdash \Sigma, \Sigma^{\prime}, A \otimes B} \otimes
$$

Task 2 (5 pts). Rather than a left rule for $A \otimes B$, we define $(A \otimes B)^{\perp}=A^{\perp} 8 B^{\perp}$ and give a (right) rule for $>$. Show this rule.

$$
\frac{\vdash \Sigma, A, B}{\vdash \Sigma, A \diamond B} \ngtr
$$

Task 3 (10 pts). Show the identity expansion for \gg in the classical sequent calculus.

${\overline{\vdash A^{\perp} \otimes B^{\perp}, A \gtrdot B}}^{\mathrm{id}_{A \gtrdot B}} \longrightarrow_{E}$	$\frac{\overline{\vdash A^{\perp}, A} \text { id }_{A} \overline{\vdash B^{\perp}, B}}{\frac{\vdash A^{\perp} \otimes B^{\perp}, A, B}{\vdash A^{\perp} \otimes B^{\perp}, A \ngtr B}} \otimes$

Task 4 (15 pts). Show the cut reduction between \otimes and \gtrdot in the classical sequent calculus.

$$
\begin{gathered}
\frac{\frac{\vdash \Sigma, A \vdash \Sigma^{\prime}, B}{\vdash \Sigma, \Sigma^{\prime}, A \otimes B} \otimes \frac{\vdash \Sigma^{\prime \prime}, A^{\perp}, B^{\perp}}{\vdash \Sigma^{\prime \prime}, A^{\perp} 8 B^{\perp}} 8}{\vdash \Sigma, \Sigma^{\prime}, \Sigma^{\prime \prime}} \mathrm{cut} \\
\longrightarrow R \\
\frac{\vdash \Sigma^{\prime}, B}{\vdash \Sigma, A \vdash \Sigma^{\prime \prime}, A^{\perp}, B^{\perp}} \\
\vdash \Sigma, \Sigma^{\prime \prime}, B^{\perp} \\
\mathrm{fut} \\
\mathrm{cut}
\end{gathered}
$$

Task 5 (10 pts). In classical linear logic, the exponential is defined by $(!A)^{\perp}=?\left(A^{\perp}\right)$, the following rules

$$
\frac{\vdash ? \Sigma, A}{\vdash ? \Sigma,!A}!\quad \frac{\vdash \Sigma, A}{\vdash \Sigma, ? A} ?
$$

plus two additional rules. Please name them and show them.

They are weakening and contraction:

$$
\frac{\vdash \Sigma}{\vdash \Sigma, ? A} \text { Weaken } \quad \frac{\vdash \Sigma, ? A, ? A}{\vdash \Sigma, ? A} \text { Contract }
$$

Task 6 (10 pts). While cut elimination holds in classical linear logic, a structural induction proof of its admissibility in the cut-free classical sequent calculus does not go through. Identify the critical case and explain why the induction fails.

When we have a cut of $!A^{\perp}$ with a contraction of ? A,

$$
\frac{\frac{\vdash \Sigma, ? A, ? A}{\vdash \Sigma, ? A} \text { Contract } \vdash \Sigma,!A^{\perp}}{\vdash \Sigma, \Sigma^{\prime}} \mathrm{cut}
$$

we can cut out one of the copies of ? A, but the resulting proof of might be larger so it is not clear how to cut out the second copy since the cut formula remains the same.

3 Resource Semantics (40 pts)

In the resource semantics we track linearity through algebraic reasoning on resource expressions

$$
\text { Resource exprs. } \quad p::=\epsilon\left|p_{1} * p_{2}\right| \alpha
$$

Task 1 (5 pts). Write out the resource equations that characterize linear logic.
\square

Task 2 (5 pts). Recall the $\multimap R$ rule.

$$
\frac{\Gamma, A @ \alpha \vdash B @ p * \alpha}{\Gamma \vdash A \multimap B @ p} \multimap R^{\alpha}
$$

Task 3 (5 pts). Recall the $\multimap L$ rule. You may use the tethered or untethered form.

$$
\frac{\Gamma, A \multimap B @ \alpha \vdash A @ p \quad \Gamma, A \multimap B @ \alpha, B @ \beta \vdash C @ q * \beta}{\Gamma, A \multimap B @ \alpha \vdash C @ p * q * \alpha} \multimap L^{\beta}
$$

Strict logic has just two forms of resources: persistent ones, which can be used arbitrarily often, and strict ones, which must be used at least once. We claim that the resource semantics with exactly the same rules as linear logic represents strict logic if we add the law of idempotence for resource expressions:

$$
p * p=p
$$

Task 4 (15 pts). Prove that $\vdash(A \multimap A \multimap B) \multimap(A \multimap B) @ \epsilon$ using your resource rules, where $A \multimap B$ now represents a strict implication.

Omitting hypotheses that are no longer needed:

Task 5 (10 pts). Prove that $\vdash B \multimap(A \multimap B) @ \epsilon$ does not hold in general in strict logic. You may assume cut elimination and that identity can be reduced to atomic propositions.

Assume for atomic propositions a and b :

$$
\vdash \mathrm{b} \multimap(\mathrm{a} \multimap \mathrm{~b}) @ \epsilon
$$

By cut elimination, there must be a cut-free proof of this sequent. Besides cut, there is only one rule matching this conclusion, and the premise must be

$$
\mathrm{b} @ \alpha \vdash \mathrm{a} \multimap \mathrm{~b} @ \alpha
$$

Again, only one rule could have inferred this, with premise

$$
\mathfrak{b} @ \alpha, \mathbf{a} @ \beta \vdash \mathbf{b} @ \alpha * \beta
$$

Since a and b are atomic, this could only follow by the identity and would require

$$
\alpha=\alpha * \beta
$$

However, for resource parameters α and β, this is not true even in the presence of idempotence.

4 Forward Chaining (40 pts)

Consider a representation of binary numbers in ordered linear logic, where the number $b_{n-1} \cdots b_{0}$ (with b_{0} representing the least significant bit) is represented by the ordered context

$$
\text { end, } \operatorname{bit}\left(b_{n-1}\right), \ldots, \operatorname{bit}\left(b_{0}\right)
$$

where each bit b_{i} is either 0 or 1 .
Task 1 (10 pts). The following ordered program increments the represented number if started with inc added at the right end of the context. Complete the program, assuming bit, end, and inc are all positive.

$$
\begin{aligned}
& \operatorname{bit}(0) \bullet \text { inc } \rightarrow \operatorname{bit}(1) \\
& \operatorname{bit}(1) \bullet \text { inc } \rightarrow \operatorname{inc} \bullet \operatorname{bit}(0) \\
& \text { end } \bullet \text { inc } \rightarrow \text { end } \bullet \operatorname{bit}(1)
\end{aligned}
$$

Task 2 (15 pts). Rewrite the above program in linear logic. We represent the number now as

$$
\operatorname{end}\left(d_{n}\right), \operatorname{bit}\left(d_{n}, b_{n-1}, d_{n-1}\right), \ldots, \operatorname{bit}\left(d_{1}, b_{0}, d_{0}\right)
$$

where each b_{i} is either 0 or 1 , and the d_{i} are mutually distinct destinations. The command to increment starting at bit i is represented as the proposition $\operatorname{inc}\left(d_{i}\right)$.

Write a forward chaining program to increment a number in this representation. When inc $\left(d_{0}\right)$ is added to the context representing the number n, it should reach quiescence with the context containing the represention of the number $n+1$. You may assume bit, end, and inc are positive, or you may use a monad.

$$
\begin{aligned}
& \operatorname{bit}\left(d^{\prime}, 0, d\right) \otimes \operatorname{inc}(d) \multimap \operatorname{bit}\left(d^{\prime}, 1, d\right) \\
& \operatorname{bit}\left(d^{\prime}, 1, d\right) \otimes \operatorname{inc}(d) \multimap \operatorname{inc}\left(d^{\prime}\right) \otimes \operatorname{bit}\left(d^{\prime}, 0, d\right) \\
& \operatorname{end}(d) \otimes \operatorname{inc}(d) \multimap \exists d^{\prime} . \operatorname{end}\left(d^{\prime}\right) \otimes \operatorname{bit}\left(d^{\prime}, 1, d\right)
\end{aligned}
$$

Task 3 (15 pts). Your program for incrementing a number is likely sequential. Write a forwardchaining program that computes the parity of the binary number. When given a number in the representation above, it should reach quiescence in a state with only $\operatorname{bit}\left(d^{\prime}, 1, d\right)$ if there are an odd number of bits 1 and $\operatorname{bit}\left(d^{\prime}, 0, d\right)$ if there are an even number of bits 1 . The destinations d and d^{\prime} are irrelevant and may be arbitrary. Your program should admit some parallelism.

$$
\begin{aligned}
& \operatorname{bit}\left(d_{1}, 0, d_{2}\right) \otimes \operatorname{bit}\left(d_{3}, 0, d_{4}\right) \multimap \operatorname{bit}\left(d_{1}, 0, d_{4}\right) \\
& \operatorname{bit}\left(d_{1}, 0, d_{2}\right) \otimes \operatorname{bit}\left(d_{3}, 1, d_{4}\right) \multimap \operatorname{bit}\left(d_{1}, 1, d_{4}\right) \\
& \operatorname{bit}\left(d_{1}, 1, d_{2}\right) \otimes \operatorname{bit}\left(d_{3}, 1, d_{4}\right) \multimap \operatorname{bit}\left(d_{1}, 0, d_{4}\right) \\
& \operatorname{end}(d) \multimap \operatorname{bit}(d, 0, d)
\end{aligned}
$$

5 Possibility (50 pts)

We can introduce ? A into intuitionistic linear logic with the new judgment A poss and the following rules:

$$
\begin{gathered}
\frac{\Gamma ; \Delta \vdash A}{\Gamma ; \Delta \vdash A \text { poss }} \text { poss } \\
\frac{\Gamma ; \Delta \vdash A \text { poss }}{\Gamma ; \Delta \vdash ? A} ? R \quad \frac{\Gamma ; A \vdash C \text { poss }}{\Gamma ; ? A \vdash C \text { poss }} ? L
\end{gathered}
$$

All the left rules as well as copy, cut and cutbang are generalized to allow a succedent of the form C poss

Task 1 (10 pts). State the new cut rule needed, cut?.

$$
\frac{\Gamma ; \Delta \vdash A \text { poss } \quad \Gamma ; A \vdash C \text { poss }}{\Gamma ; \Delta \vdash C \text { poss }} \mathrm{cut} \text { ? }
$$

Task $2(10 \mathrm{pts})$. Prove $\vdash!(A \multimap B) \multimap ? A \multimap ? B$

$$
\begin{gathered}
\frac{A \multimap B ; A \vdash A}{} \text { id } \overline{A \multimap B ; B \vdash B} \\
\frac{A \multimap B ; A, A \multimap B \vdash B}{A \multimap B ; A, A \multimap B \vdash B \text { poss }} \text { poss } \\
\frac{A}{\frac{A \multimap B ; A \vdash B \text { poss }}{A \multimap B ; ? A \vdash B \text { poss }} ? L} ? \\
\frac{A}{\frac{A \multimap B ; ? A \vdash ? B}{!(A \multimap B), ? A \vdash ? B}!L} \\
\frac{\vdash!(A \multimap B) \multimap ? A \multimap ? B}{} \multimap R^{2}
\end{gathered}
$$

Task 3 (10 pts). Show the identity expansion for ? A.
\square

Task 4 (5 pts). What is the polarity of ? A ?

It is negative on the outside, and positive on the inside.

Task 5 (15 pts). Give focusing versions of the new rules poss, ? R and ? L.

$$
\begin{gathered}
\frac{\Gamma ; \Delta \vdash[A]}{\Gamma ; \Delta \vdash A \text { poss } \text { poss }^{*}} \quad\left({ }^{*}\right) \Delta \text { stable } \\
\frac{\Gamma ; \Delta \vdash A \text { poss }}{\Gamma ; \Delta \vdash ? A} ? R \quad \frac{\Gamma ; A \vdash C \text { poss }}{\Gamma ;[? A] \vdash C \text { poss }} ? L
\end{gathered}
$$

6 Quotations (15 pts)

Task 1 (15 pts).

Give a man a fish and you feed him for a day. Teach a man how to fish and you feed him for a lifetime. - Chinese proverb

Express this quotation in linear logic, using the following vocabulary:

Types	person, food	
Predicates	own (x, y)	person x owns food y
	eat (x, y)	person x can eat food y
	fish (x)	food x is fish

Since we do not model time, think of "for a day" as "once", and "for a lifetime" as "arbitrarily often".

A simple solution that does not model the ownership transfer or teaching:

$$
\begin{gathered}
(\forall y \text { :person. }(\exists f: \text { food. ! fish }(f) \otimes \operatorname{own}(y, f)) \multimap \exists w \text { :food. eat }(y, w)) \\
\&(\forall y \text { :person. }(!\exists f: \text { food. !fish }(f) \otimes \operatorname{own}(y, f)) \multimap!\exists w \text { :food. eat }(y, w)))
\end{gathered}
$$

A more complex one that does try to model ownership and teaching:

$$
\begin{aligned}
& \text { can_fish }(z)=!\exists f: \text { food. !fish }(f) \otimes \operatorname{own}(z, f) \\
& !(\forall x: \text { person. } \forall y: \text { :person. } \\
& \quad(\exists f: \text { food. }!\text { fish }(f) \otimes \text { own }(x, f) \otimes(\text { own }(x, f) \multimap \operatorname{own}(y, f))) \multimap \exists w: \text { food. eat }(y, w)) \\
& \&(\forall x: \text { person. } \forall y: \text { person. } \\
& \quad \text { can_fish }(x) \otimes(\text { can_fish }(x) \multimap \text { can_fish }(y)) \multimap!\exists w: \text { food. eat }(y, w)))
\end{aligned}
$$

