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In this lecture we explore the parallelism inherent in forward-chaining logic
programming. As we have seen in the last lecture, forward chaining takes
place when the stable sequent has the form Γ ; ∆ ` E÷A lax . The material
of this lecture is not well-documented in the literature, although the form
of the equality on concurrent computations is mentioned in some of the
publications on CLF [WCPW02, CPWW02, WCPW04b, WCPW04a].

1 Operations on Binary Numbers

We start with a review of operations on numbers in binary representation
in Celf. These are backward-chaining logic programs, but they will be helpful
as subcomputations in our forward-chaining programs.

First, the type declarations of natural numbers as a sequence of bits
(represented by b0 and b1) and the increment predicate. We provide a mode
declaration which states that the first argument to increment should be input
and the second output.

bit : type.

b0 : bit.

b1 : bit.

nat : type.

e : nat.

d : nat -o bit -o nat.

% Increment
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inc : nat -> nat -> type.

#mode inc + -.

inc/e : inc e (d e b1).

inc/0 : inc (d M b0) (d M b1).

inc/1 : inc (d M b1) (d R b0) o- inc M R.

It is tempting to use the inc predicate to perform a decrement when we
need it, giving it the second argument as input and expecting the first ar-
gument as output. Even though the predicate would be well-moded in that
direction, it does not work correctly because of nondeterminism: a query
inc M (d e b1) to find the predecessor of 1, matches both the first and sec-
ond clause. Upon first success it will return e, the second time (d e b0).
Both are valid representations of 0. This kind of nondeterminism is unac-
ceptable in a backward-chaining program: because of backtracking, it will
deliver multiple solutions which could wreak havoc on the calling predi-
cates.

It is my experience that, in general, it is rarely useful to run a given
predicate in multiple directions. Here, we just write an explicit decrement
predicate and then addition.

% Decrement

dec : nat -> nat -> type.

#mode dec + -.

% no case for dec/e

% 2m-1 = 2(m-1)+1

dec/0 : dec (d M b0) (d N b1) o- dec M N.

dec/1 : dec (d M b1) (d M b0).

% Addition

plus : nat -> nat -> nat -> type.

#mode plus + + -.

p/e/e : plus e e e.

p/e/0 : plus e (d N b0) (d N b0).

p/e/1 : plus e (d N b1) (d N b1).

p/0/e : plus (d M b0) e (d M b0).

p/0/0 : plus (d M b0) (d N b0) (d R b0) o- plus M N R.

p/0/1 : plus (d M b0) (d N b1) (d R b1) o- plus M N R.

p/1/e : plus (d M b1) e (d M b1).
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p/1/0 : plus (d M b1) (d N b0) (d R b1) o- plus M N R.

p/1/1 : plus (d M b1) (d N b1) (d R b0) o- plus M N K * inc K R.

There is another natural definition of addition that uses a carry bit in-
stead of an increment. We finish our natural number “library” with predi-
cates for less-or-equal and less-than.

% Less or equal

leq : nat -> nat -> type.

#mode leq + +.

leq/e : leq e N.

leq/0/e : leq (d M b0) e o- leq M e.

leq/0/0 : leq (d M b0) (d N b0) o- leq M N.

leq/0/1 : leq (d M b0) (d N b1) o- leq M N.

% no case for leq/1/e

% 2m+1 <= 2n iff 2m <= 2n-1 iff 2m <= 2n-2 iff m <= n-1

leq/1/0 : leq (d M b1) (d N b0) o- dec N N1 * leq M N1.

leq/1/1 : leq (d M b1) (d N b1) o- leq M N.

% Less than

lt : nat -> nat -> type.

#mode lt + +.

% no case for lt/e/e

lt/e/0 : lt e (d N b0) o- lt e N.

lt/e/1 : lt e (d N b1).

% no case for lt/0/e

lt/0/0 : lt (d M b0) (d N b0) o- lt M N.

lt/0/1 : lt (d M b0) (d N b1) o- leq M N.

% no case for lt/1/e

% 2m+1 < 2n iff 2m < 2n-1 iff 2m <= 2n-2 iff m <= n-1

lt/1/0 : lt (d M b1) (d N b0) o- dec N N1 * leq M N1.

lt/1/1 : lt (d M b1) (d N b1) o- lt M N.

2 Parallel Maximum

Our first exercise is to define a function to compute the parallel maximum
of a collection of elements. We start with a list of elements, which we have
to load into the context before the parallel algorithm itself starts.

Lists of natural numbers are very similar to lists of digits.

list : type.
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nil : list.

cons : nat -o list -o list.

To load the elements into the context, we just recurse down the list in
a backward-chaining program, assuming elemn for every element n in the
list.

elem : nat -> type.

#mode elem -.

load : list -> nat -> type.

#mode load + -.

load/nil : load nil.

load/cons : load (cons N Ns) o- (elem N -o load Ns).

While this loads the elements into the context it doesn’t start any com-
putation. When the last element has been added as a resource, we want to
start forward chaining, so the first clause has to be changed to look like

load/nil : load nil o- { ... }.

In the elided part, we have to read off the solution we want, namely
the maximum element. We compute the maximum by picking any two
elements, comparing then, and keeping only the larger one.

combine : elem M * elem N * leq M N -o {elem N}.

Eventually we must be left with only the largest one, assuming there
are any. Going back to the first clause, once forward chaining reaches qui-
escence, we match against the only remaining (and therefore maximal) ele-
ment and pass this back all the way through the calls that loaded the pred-
icate.

load : list -> nat -> type.

#mode load + -.

load/nil : load nil Max o- {elem Max}.

load/cons : load (cons N Ns) Max o- (elem N -o load Ns Max).
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Note that this requires the list to be non-empty. Otherwise, we could
initialize the context with a smallest element 0, but we will not bother with
this.

The core of this algorithm has a lot of parallelism because we can pick
up any two elements and keep only the larger one. If there are many ele-
ments, a lot of these actions will be independent. The Celf implementation
of CLF is currently not parallel, however, so while we model potential par-
allelism, we don’t actually execute in parallel at present.

3 Proof Terms

Next we write a test query that finds the maximum of the list [0, 3, 2, 0]
and should return 3. There should be only one solution. We therefore ask
#query * 1 * 1, which means we expect a unique solution and run the
query just once.

#query * 1 * 1

load (cons e (cons (d (d e b1) b1) (cons (d (d e b1) b0) (cons e nil)))) Max.

Here is a record of our interaction, using the Celf source files on the
course web pages.

% celf nat.clf list.clf max.clf

Celf ver 2.9. Copyright (C) 2011

[reading nat.clf]

...

[closing nat.clf]

[reading list.clf]

...

[closing list.clf]

[reading max.clf]

elem: nat -> type.

#mode elem { } -.

load: list -> nat -> type.

#mode load { } + -.

load/nil: Pi Max: nat. {elem Max} -o load nil Max.

load/cons: Pi Max: nat. Pi N: nat. Pi Ns: list. (elem N -o load Ns Max) -o load (cons N Ns) Max.

combine: Pi M: nat. Pi N: nat. (elem M * (elem N * leq M N)) -o {elem N}.

Query (*, 1, *, 1) load (cons e (cons (d (d e b1) b1) (cons (d (d e b1) b0) (cons e nil)))) #Max.

Solution: load/cons (\X1. load/cons (\X2. load/cons (\X3. load/cons (\X4. load/nil {

let {X5} = combine [X1, [X3, leq/e]] in

let {X6} = combine [X4, [X2, leq/e]] in
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let {X7} = combine [X5, [X6, leq/0/1 (leq/1/1 leq/e)]] in X7}))))

#Max = d (d e b1) b1

Query ok.

[closing max.clf]

We see that Celf also reports a solution, which consists of a proof term
and a substitution for the free variables in the query, here only Max, printed
as #Max, which luckily is 3.

Let’s examine this proof term in more detail, recalling the crucial con-
stants in the signature.

load/nil : load nil Max o- {elem Max}.

load/cons : load (cons N Ns) Max o- (elem N -o load Ns Max).

combine : elem M * elem N * leq M N -o {elem N}.

At the top level we see

load/cons (\X1. load/cons (\X2. load/cons (\X3. load/cons (\X4. load/nil {...}))))

which introduces resources

X1 : elem e,

X2 : elem (d (d e b1) b1),

X3 : elem (d (d e b1) b0),

X4 : elem e

into the linear context. Then it enters the monad, where we have elided the
monadic expression representing the forward-chaining computation. This
is

let {X5} = combine [X1, [X3, leq/e]] in

let {X6} = combine [X4, [X2, leq/e]] in

let {X7} = combine [X5, [X6, leq/0/1 (leq/1/1 leq/e)]] in

X7

We see that the concrete syntax for a multiplicative pairM1⊗M2 is [M1, M2].
So in the first step, combine is applied to X1, X3, and a proof that 0 ≤ 2. This
consumes X1 : elem e and X3 : elem (d (d e b1) b0) and adds a new
resource

X5 : elem (d (d e b1) b0)

The second step compares 0 and 3, consuming X4 and X2 and adding
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X6 : elem (d (d e b1) b1)

At this point the linear context contains only

X5 : elem (d (d e b1) b0),

X6 : elem (d (d e b1) b1)

These are combined in the next step

let {X7} = combine [X5, [X6, leq/0/1 (leq/1/1 leq/e)]] in

where the leq/0/1 (leq/1/1 leq/e) represents the proof that 2 ≤ 3. In
the process we consume X5 and X6 and add resource X7 : elem (d (d e b1) b1).

At this point no further rules applies: forward chaining has reached
quiescence. In this state we now solve the query elem Max, which has proof
term X7 and instantiates Max to 3.

4 Dependency Graphs of Computations

Let’s look again at this particular forward-chaining computation. Running
the query again likely would yield a different term, due to some built-in
non-determinism in the operational semantics and its implementation.

let {X5} = combine [X1, [X3, leq/e]] in

let {X6} = combine [X4, [X2, leq/e]] in

let {X7} = combine [X5, [X6, leq/0/1 (leq/1/1 leq/e)]] in

X7

The variables now induces some dependencies between the computation
steps. When we start, we have variables x1, x2, x3, and x4. Then x5 depends
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on x1 and x3, and so on.

x1	
   x3	
   x4	
   x2	
  

x5	
   x6	
  

x7	
  

We should not be able to distinguish different ways to linearize the graph
into a sequence of let-expressions. And, indeed, in the framework different
interleavings of independent steps are treated as equal. This is discussed a
little further in Section 7.

5 Permutations

As a warm-up for sorting a list, we want to write a program to compute
an arbitrary permutation of a list. The difference to the above algorithm for
maximum is that we cannot read out the answer from the state in a single
step, but need to build a new list.

The basic idea is quite simple: we first load the context with proposi-
tions member n for each element of the list, then we just collect the elements
back into a list. Since the order of resources in the linear context is irrele-
vant, we can pick up any permutation of the input list in this manner.

perm : list -> list -> type.

#mode perm + -.

member : nat -> type.

#mode member -.

collect : list -> type.

#mode collect -.
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perm/load/cons : perm (cons N Ns) Ks o- (member N -o perm Ns Ks).

perm/load/nil : perm nil Ks o- (collect nil -o {collect Ks}).

collect1 : member N * collect Ks -o {collect (cons N Ks)}.

Because the order in which the forward chaining rules fire is don’t-care
nondeterministic, we obtain a single answer which is some arbitrary per-
mutation of the input list. We can try running a query 4 times, examining
the results, with a query

#query * * * 4

perm (cons e (cons (d (d e b1) b1) (cons (d (d e b1) b0) (cons e nil)))) Ks.

and, indeed, you should see several variations.

6 Sorting

As a next example we try a “parallel bubblesort”. If we had an ordered
logical framework, we could load the elements into the ordered context

elemx1, . . . , elemxn

and then use the single rule

elemm • elemn • ltnm� {elemn • elemm}

When we reach quiescence the list must be sorted, because no two adjacent
elements are out of order.

Unfortunately, Celf does not have an ordered context, so we have to
encode this into linear logic. For this, we use the same technique that we
used in substructural operational semantics: we thread destinations so that
each element implicitly has pointers to the elements to its left and right.

To load elements into the context we start from some initial destination
D0 and create a new destination d’ for every element in the list. At the end
we have D0 and Dn as the left and right endpoints of the elements loaded
into the context.

dest : type.

ld : dest -> list -> dest -> list -> type.

#mode ld + + + -.
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mem : dest -> nat -> dest -> type.

#mode mem - - -.

coll : dest -> list -> dest -> type.

#mode coll + - +.

ld/cons : ld D0 (cons N Ns) D Ks o- (Pi d’. mem D N d’ -o ld D0 Ns d’ Ks).

ld/nil : ld D0 nil Dn Ks o- {coll D0 Ks Dn}.

We use coll D0 Ks Dn to collect the elements between D0 and Dn into
the final list Ks which is passed backwards to the initial call to ld.

Now the swapping rule itself can exchange any two adjacent elements
that are out of order.

swap : mem D1 M D2 * mem D2 N D3 * lt N M -o {mem D1 N D2 * mem D2 M D3}.

It is important that we preserve the two endpoints of the pair of elements,
D1 on the left and D3 on the right.

To collect the elements we use a backward-chaining program, which
maintains the destinations bracketing the segment of the list that still has
to be collected. It stops and return nil if the right end of the list has been
reached, which can be seen from the left and right end of the segment being
identical.

coll/nil : coll Dn nil Dn.

coll/cons : coll D (cons N Ks) Dn o- mem D N D’ o- coll D’ Ks Dn.

Finally, we need a top-level call with an initial destination d0 which
represents the empty list (nothing has been loaded yet).

sort : list -> list -> type.

#mode sort + -.

sort/top : sort Ns Ks o- (Pi d0. ld d0 Ns d0 Ks).

Even though this algorithm is probably quite inefficient, it does have
some parallelism, because out-of-order pairs that do not overlap can ex-
change themselves in parallel.
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7 Capturing Dependency with Trace Equality

We now slightly reformulate the rules in the definition of CLF in order to
isolate monadic computations as separate objects to we can study them
separately. This is designed to separate the forward-chaining computation
from the succedent of the sequent that is only executed when quiescence is
reached.

We now have only one rule when we reach the judgment E ÷ S lax.

∆→ ε : ∆′ ∆′ →M : [S]

∆→ let ε inM ÷ S lax
lax

The new syntactic category of ε is intended to represented a computation
starting from state ∆ and ending with state ∆′. We have previously written

∆ −→ ∆′

now we write
∆→ ε : ∆′

to record the computation itself. In the context of the new lax rule we want
∆′ to be quiescent, but that is not part of the formalism, only of the un-
derlying operational semantics. For brevity, we omit the context Γ and its
evolution. Adding this back in is not entirely straightforward, but we will
not address it here.

So what are the possibilities for concurrent computations? The first pos-
sibility is to take no step at all. In that case the state does not change.

∆→ [ ] : ∆
[ ]

We can also compose to computations if their interfaces match up: the sec-
ond one starts in the state in which the first one ends.

∆1 → ε1 : ∆2 ∆2 → ε2 : ∆3

∆1 → ε1 ; ε2 : ∆3

;

Finally, we need to perform a single step of forward chaining, which arises
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from focusing on a forward-chaining clause.

∆, x:[A] ` ε : ∆′

∆, x:A→ ε : ∆′
focL′

∆, p:S → ∆′

∆, R : [{S}]→ {p} = R : ∆′
blurL′

∆ stable
∆ ` ∆

id∆

There are analogous versions of the left focus rule for affine and persistent
resources. The focus and inversion rules in the antecent have to be updated
to have a different form of succedent now.

Next we look at some of the laws associated with concurrent computa-
tions. This is related to the theory of traces, but we will not pursue this in
detail. First we note that the zero-step computation is the unit of composi-
tion, and that composition is associative.

[ ] ; ε = ε ; [ ] = ε
(ε1 ; ε2) ; ε3 = ε1 ; (ε2 ; ε3)

Computations that are independent of each other can happen in either or-
der. This means that no variable introduced by one is used in the other and
vice versa. So we define the pre-set (•(ε)) and post-set ((ε)•) of variables for
each computation. We write fv(R) for the free variables of an atomic term,
and bv(p) for the variables bound in a pattern.

•(p = R) = fv(R)
(p = R)• = bv(p)

•(ε1 ; ε2) = •(ε1) ∪ (•(ε2)− (ε1)•)
(ε1 ; ε2)• = ((ε1)•− •(ε2)) ∪ (ε2)•)

•([ ]) = { }
([ ])• = { }

Now we can say when two computations can be exchanged:

ε1 ; ε2 = ε2 ; ε1 provided (ε1)• ∩ •(ε2) = •(ε1) ∩ (ε2)• = { }
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