
Lecture Notes on
A Concurrent Logical Framework

15-816: Linear Logic
Frank Pfenning

Lecture 21
April 9, 2012

Today we will put many of pieces together that we have put in place so
far, by moving from a logic to a type theory. This means being explicit about
proof terms. The end goal is to develop the concurrent logical framework
CLF [WCPW02, CPWW02].

1 Propositions

We start with the language of propositions, which are now identified en-
tirely with types. It is based upon the negative and positive proposition
from the last lecture.

Async (neg) A ::= P− | S (A | A1 NA2 | Πu:A1. A2 | {S}
| > (omitted from CLF)

Sync (pos) S ::= S1 ⊗ S2 | 1 | ∃u:A.S | A | !A | @A
| P+ | S1 ⊕ S2 | 0 (omitted from CLF)

A few notes on this grammar: we eliminated > and 0, but added affine
resources, marked with @A to take their place. We will explain later why
these are not present. We also eliminated positive atoms, which is mostly
a historical omission. However, it turns out in our examples it is easily
possible to get by without positive atoms, at the cost of additional focusing
phases.

The biggest change is to replace the type τ in the quantifiers with neg-
ative proposition, now acting as a type of proof terms. To build the type
theory we now need to develop a notion of proof.

LECTURE NOTES APRIL 9, 2012

A Concurrent Logical Framework L21.2

2 Negative Proof Terms

In order to be able to instantiate the quantifiers, and also to understand the
structure of proofs as objects of study, we now need to assign proof terms
to the types we have introduced above. For example, in our encoding of
substructural operational semantics so far we can examine the state during
the computation, but we do not have an object describing the computation
itself. That will be role of the proof terms.

We start with backward chaining. The pure backward chaining frag-
ment of the logic is obtained by removing the lax monad {S} and leaving
everything else intact. Sequents during the inversion phase of backward
chaining will have the form

∆→ N : A

where N are the normal terms that arise from the search. We call them
normal, because they do not contain a cut (or a redex, its natural deduction
analog).

We start with linear implication, which may at first seem straightfor-
ward, but which we will have to revisit later. In the presentation of the
rules, we omit persistent and affine resources, and concentrate on the lin-
ear ones.

∆, x:S → N : A

∆→ λx.N : S (A
(R?

∆→ N1 : A1 ∆→ N2 : A2

∆→ 〈N1, N2〉 : A1 NA2

NR

How do we treat Πu:A1. A2? It will work very similar to the universal quan-
tifier, except that the new parameter does not come form a separate domain,
but is just a typing assumption. This hypothesis is persistent, however.

Γ, u:A1 ; Ξ ; ∆→ N : A2

Γ ; Ξ ; ∆→ λu:A1. N : Πu:A1. A2
ΠR

Note that both occurrences of u in the conclusion of this rule are bound
variables. We call them u in order to simplify the presentation of the rule.

At a negative atom, we have to focus on some resource in Γ, Ξ, or ∆,
assuming for now the sequent is stable.

Γ ; Ξ ; ∆, x:[A]→ R : P−

Γ ; Ξ ; ∆, x:A→ R : P−
focL

Γ ; Ξ ; ∆, a:[A]→ R : P−

Γ ; Ξ, a:A ; ∆→ R : P−
focL@

u:A ∈ Γ Γ ; Ξ ; ∆, u:[A]→ R : P−

Γ ; Ξ ; ∆→ R : P−
focL!

LECTURE NOTES APRIL 9, 2012

A Concurrent Logical Framework L21.3

So one possibility for a normal term N is a new kind of term R, which
represents proof constructed during focusing. We call these atomic terms.

The base case for left focusing is that we reach a negative atom. In this
case we just return the proof term constructed for the formula in focus as
the proof term R.

R:[P−]→ R : P−
id−

The next situation to consider is that we are focused on a linear implication.
We assume we already have constructed an R:[S (A].

∆, RM :[A]→ R′ : C ∆′ →M : [S]

∆,∆′, R:[S (A]→ R′ : C
(L

We see the evidence for the truth of A is just an application, which is there-
fore a specific kind of atomic term. Operationally, we have to search for
the proof of the first premise first. We cannot yet construct its justification,
because we have not yet solved the subgoal S. However, when we succeed
in the end we will be able to fill in the whole term.

Next we consider the universal quantifier, which is part of the backward
chaining semantics. When focused on that, we will fill in a variable and let
unification during proof search determine its value. At the present level of
abstraction in the description of the system, we just write a premise that
“guesses” a term of the right type. Because quantification is over persistent
terms only, this term must be closed with respect to the linear (and affine)
variables.

· → N : A1 ∆, RN :[A2{N/u}]→ R′ : C

∆, R:[Πu:A1. A2]→ R′ : C
ΠL

Since the variable u can appear in A2, we have to substitute the term N for
u in the type of RN . This is the essence of a dependent function type.

To summarize, at this point we have judgments

∆→ N : A
∆, R:[A]→ R′ : P−

∆→M : [S]

with terms

Normal terms N ::= λx.N | λu.N | 〈N1, N2〉 | R
Atomic terms R ::= x | a | u | RN | π1R | π2R

Positive terms M ::= . . .

LECTURE NOTES APRIL 9, 2012

A Concurrent Logical Framework L21.4

where we have elided the obvious left rules NL1 and NL2 which requires
atomic terms π1R and π2R.

The terms for the positive constructors will be next.

3 Positive Proof Terms

The judgment that arose so far was just S in right focus. We start with
tensor and unit.

∆1 →M1 : [S1] ∆2 →M2 : [S2]

∆1,∆2 →M1 ⊗M2 : [S1 ⊗ S2]
⊗R

· ` 1 : [1]
1R

For an existential in right focus, the considerations are similar for a univer-
sal in left focus. In the rules we guess the term; in the operational semantics
we use a variable together with unification instead to determine it.

· → N : A ∆→M : [S{N/u}]

∆→ N ⊗M : [∃u:A.S]
∃R

Finally, for the inclusion of negative propositions in positive ones, we just
have a corresponding inclusion of negative terms in positive ones. We lose
focus in either case.

Γ ; Ξ ; ∆ ` N : A

Γ ; Ξ ; ∆ ` N : [A]
blurR

Γ ; Ξ ; · → N : A

Γ ; Ξ ; · → @N : [@A]
@R

Γ ; · ; · ` N : A

Γ ; · ; · ` !N : [!A]
!R

We made the persistent and affine assumptions explicit here, since they
play a significant role in these rules.

Positive terms M ::= M1 ⊗M2 | 1 | N ⊗M | N | @N | !N

But what happened to the (invertible) left rules for the positive propo-
sitions S? Going back to our very first rule

∆, x:S → N : A

∆→ λx.N : S (A
(R?

we see that we have no rules to decompose x:S. We also see that the left
rule (L will apply the functional term to a positive term. So instead of

LECTURE NOTES APRIL 9, 2012

A Concurrent Logical Framework L21.5

simply abstracting over a variable we abstract over a pattern that matches
the structure of the positive term.

∆, p:S → N : A

∆→ λp.N : S (A
(R

Again, the mode of this judgment is somewhat strange, because the pattern
p is generated by the demposition of S.

The various forms for this pattern are now straightforward, since they
match the terms. When we hit a negative proposition A or an affine or
persistent modality, we obtain a variable (in the linear, affine, or persistent
context). The first one would have identical premise and conclusion, in our
formulation. It could also be seen as going from ↓x:↓A to x:A.

Γ ; Ξ, a:A ; ∆→ N : A′

Γ ; Ξ ; ∆,@a:@A→ N : A′

Γ, u:A ; Ξ ; ∆→ N : A′

Γ ; Ξ ; ∆, !u:!A→ N : A′

The others are even simpler:

∆, p1:S1, p2:S2 → N : A′

∆, p1 ⊗ p2:S1 ⊗ S2 → N : A′
⊗L

∆→ N : A′

∆,1:1→ N : A′
1L

Γ, y:A ; Ξ ; ∆, p:S → N : A′

Γ ; Ξ ; ∆, x⊗ p:∃u:A.S → N : A′
∃L

At this point our language is complete for the backward-chaining fragment,
that is, the fragment that excludes the monad.

Async (neg) A ::= P− | S (A | A1 NA2 | Πu:A1. A2 | . . .
Sync (pos) S ::= S1 ⊗ S2 | 1 | ∃u:A.S | A | !A | @A

Normal terms N ::= λp.N | λx.N | 〈N1, N2〉 | R
Atomic terms R ::= x | a | u | RM | RN | π1R | π2R

Positive terms M ::= M1 ⊗M2 | 1 | N ⊗M | N | @N | !N
Positive patterns p ::= p1 ⊗ p2 | 1 | x⊗ p | x | @a | !u

We have listed to form of abstraction to match the two forms of applica-
tion. One is over a pattern and application to a positive term (for S (A),
the other over a persistent variable and appliation to a negative term (for
Πu:A1. A2).

LECTURE NOTES APRIL 9, 2012

A Concurrent Logical Framework L21.6

4 Monadic Expressions

If we want to capture all of CLF, we now have to add the monad. It arises
if we stumble upon {S} during inversion. Write E for terms for S lax and
write E ÷ S lax .

∆ ` E ÷ S lax

∆ ` {E} : {S}
{ }R

First the judgmental rule which is not cut (which is excluded from this sys-
tem since it does not arise in logic programming). It tells use that a positive
term is a possible monad epxression.

∆ `M : [S]

∆ `M ÷ S lax
lax

Now we have only one more rule: what happens when we are focused on
{S} on the left. Recall that we lose focus in this transition.

∆, p:S ` E ÷ S′ lax

∆, R:[{S}] ` let p = R in E ÷ S′ lax
{ }L

To summarize once more the now complete list:

Async (neg) A ::= P− | S (A | A1 NA2 | Πu:A1. A2 | {S}
Sync (pos) S ::= S1 ⊗ S2 | 1 | ∃u:A.S | A | !A | @A

Normal terms N ::= λp.N | λx.N | 〈N1, N2〉 | R | {E}
Atomic terms R ::= x | a | u | RM | RN | π1R | π2R

Positive terms M ::= M1 ⊗M2 | 1 | N ⊗M | N | @N | !N
Positive patterns p ::= p1 ⊗ p2 | 1 | x⊗ p | x | @a | !u

Monadic expressions E ::= M | let p = R in E

LECTURE NOTES APRIL 9, 2012

A Concurrent Logical Framework L21.7

References

[CPWW02] Iliano Cervesato, Frank Pfenning, David Walker, and Kevin
Watkins. A concurrent logical framework II: Examples and
applications. Technical Report CMU-CS-02-102, Department
of Computer Science, Carnegie Mellon University, 2002. Re-
vised May 2003.

[WCPW02] Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David
Walker. A concurrent logical framework I: Judgments and
properties. Technical Report CMU-CS-02-101, Department of
Computer Science, Carnegie Mellon University, 2002. Revised
May 2003.

LECTURE NOTES APRIL 9, 2012

	Propositions
	Negative Proof Terms
	Positive Proof Terms
	Monadic Expressions
	References

