Lecture Notes on
Substructural Operational Semantics

15-816: Linear Logic
Frank Pfenning

Lecture 12
February 27, 2012

In this lecture we view the operational semantics of a programming lan-
guage as a stateful system with some transitions. This suggests we should
be able to describe it in linear logic in a way that is analogous to the early
examples used in this class, like blocks world. Since we use linear logic
to describe operational semantics, we could use the term linear operational
semantics to describe this technique. It turns out that other substructural
logics, like ordered logic [PS09] or affine logic are often more appropriate,
so we refer to it more generally as substructural operational semantics [Pfe04]
(8S0S).

The particular semantics that we will describe is a transcription of the
semantics via the translation to the session-typed m-calculus presented in
the last lecture.

1 General Principles

The general idea is that we describe the state of a (potentially nondeter-
ministic) abstract machine by propositions in linear logic. These are of the
following forms:

Evaluation: eval(M, z) means that we would like to evaluate M and com-
municate the value along channel z. In the terminology of SSOS, z is
called a destination.

Return: retn(V, z) means that we return value V' to destination z.
Continuation: cont(z, F, w) means that we wait for a value on z to carry

out F' and pass the result to w.

LECTURE NOTES FEBRUARY 27, 2012

Substructural Operational Semantics L12.2

Some flexibility will be required to interpret these correctly in each case.
The overall idea is that we model state transitions so that

eval(M,x) —™ retn(V,)

if and only if V is the value of M. Because of the frame property for linear
contexts, we also get

A eval(M,z) —* A, retn(V, x)

State transitions, the way we discussed them at the very beginning of the
class, are most directly modeled in the focusing calculus, where A —* A’
if

A'FC

AL C

where each step in the proof construction consists of focusing on a formula
in the (omitted) I' and playing the focusing phase together with the follow-
ing inversion phase through to its conclusion. For example, focusing on an
(unrestriction) d —o n ® n corresponds to the derived rule

AnnkC

when we interpret all atoms as being positive. This interpretation will be
discussed further in Lecture 13 on Forward Chaining.

2 Additive Pairs

Because of their relative simplicity, we start with additive pairs (M, N).
Since we are trying to implement a concurrent semantics, here are the trans-
lations from the last lectures:

(M, N)]* = z.case([M]", [N]")
MM = (va) (M7 | 2.ink o <> w))
[M]* = (va)([M]* | w.inr; [z < w])

Let’s consider [r; M]". The right-hand side means we have to create a new
destination x and then evaluate M destination x. Meanwhile, we wait for a

LECTURE NOTES FEBRUARY 27,2012

http://www.cs.cmu.edu/~fp/courses/15816-s12/lectures/13-fwdchaining.pdf

Substructural Operational Semantics L12.3

pair to be returned on x to we can extract the first component and forward
its value to w.

eval(my M, w) —o Jx.eval(M, x) @ cont(x, w1 _, w)

Let’s take this apart a bit. The free variables in this rule, namely M and
w are implicitly universally quantified outside the proposition, just like we
do not make quantifiers explicit when writing inference rules. The existen-
tial quantifier on the right-hand side of the linear implication will add a
new parameter to the term context. Its type would be that of a destination,
which could be either a new separate type, or just be the same as the type
of terms. In order to see why this introduces a new parameter we have
to study focusing in the presence of quantification, which we postpone to
another lecture. Briefly, it is because the left rule for existentials (which
incidentally is invertible),

U Ty A A{n/x} — C
U, A der.A—C

adds a fresh n to the context ¥ of term parameters.
We obtain a symmetric form for the second projection.

eval(m M, w) —o Jz.eval(M, x) & cont(x, w1 _, w)
eval(mo M, w) —o Jx.eval(M, x) @ cont(x, mo_, w)

A pair just waits for the first or second projection to be applied, so it func-
tions as a value. That means it simply returns the pair to the given destina-
tion.

eval((M,N), z) —o retn((M, N), z)

Finally, the interaction of a pair with a projection takes place when a re-
turned value meets its continuation.

retn((M, N), z) ® cont(x,m_,w) —o 77

To see what it has to transition to, let’s recall the rules of translation to the
session-typed 7m-calculus:

[(M,N)]* = x.case([M]*,[N]")
[mi MY = (va)([M]* | z.inl; [z +> w)])

LECTURE NOTES FEBRUARY 27, 2012

Substructural Operational Semantics L12.4

When the inl is received by the case, both sides reduce: one to the first
component of the pair [M]*, the other to a channel forwarding [z <+ w]. We
therefore have

retn((M, N), z) @ cont(x,m_,w) —o eval(M, z) ® cont(x, _,w)

where channel forwarding is implemented simply by a continuation which
performs no other work. This forwarding needs to be implemented by a
separate rule

retn(V, x) ® cont(z, _, w) —o retn(V, w)
It is not a priori obvious that we do not need the symmetric form:
retn(V, w) ® cont(z, _,w) —o retn(V,z) 7

We should check at the end of the development.
Here is the summary of the substructural operational semantics, start-
ing with specific rules for pairs, followed by a generic rule for forwarding.

eval(m M, w) — Jx.eval(M, z) ® cont(x,m_, w)

eval(mo M, w) —o Jz.eval(M, x) ® cont(x, mo_, w)
eval((M,N),x) —o retn((M, N), x)
retn((M, N), z) ® cont(x,m_,w) —o eval(M, z) ® cont(x, _, w)

retn(V,) ® cont(z, _, w) —o retn(V, w)

3 Functions

We recall the translation of functions from the last lecture.

[Ay. M]* = x(y).[M];
[MNTY = (va)(IM]* | (vy)z(y).([N]Y | [z <> w]))

[2]* = [z w]

It is instructive to start with the elimination form. To evaluate M N we
immediately start the evaluation of M. We also create a process that would
like send a new y on z, but has to wait until M is prepared to receive. So
the second part of the translation is wrapped up in a continuation.

eval(M N,w) — Jx.eval(M, z) ® cont(z, _ N,w)

LECTURE NOTES FEBRUARY 27,2012

Substructural Operational Semantics L12.5

A-expressions do not immediately spawn evaluation, since they would like
to receive an argument. So functions are returned as values.

eval(\y. My, x) —o retn(\y. My, z)

When the returned function meets its continuation, we have to create the
appropriate processes that would be active after the interaction embodied
in the translation of [M N]*. We obtain:

retn(Ay. My, x) ® cont(z, _ N, w)
—o Jz.eval(M{z/y}.,z) ® eval(N, z) ® cont(z, _, w)

To clarify the communication we have called the new variable z rather than
y. It may be possible to optimize this rule, for example, by folding in the
forwarding operation like so:

retn(\y. My, z) ® cont(z, _ N, w)
—o Jz.eval(M{z/y}.,w) @ eval(V, 2)

Generally, we avoid such optimizations in order to remain as faithful as
possible to the concurrent semantics we have already given.

When we encounter a variable we have to wait for its value, forwarding
it to the target destination.

eval(z,w) —o cont(z, _,w)

4 Example

With the constructs we already have, we can illustrate this operational se-
mantics at work. We start in a state with a single destination w and the
goal to evaluate (\y.m(y,y))V, where V is an unspecified value we have
initially. We would expect

eval((A\y. m1(y, y)) V,w) —™ retn(V, w)

LECTURE NOTES FEBRUARY 27, 2012

Substructural Operational Semantics L12.6

Below, we show the available parameters on the left and evolve the state
starting at the first line.

w s eval((Ay.mi(y,y)) V,w)

w, T ;eval(Ay. mi (y, y>,:c),cont(3:,_V,w)

w, T ; retn(Ay. m1(y,y), x), cont(x, _ V,w)

w,x, 2 ;eval(mi(z, z),z),eval(V, z), cont(x, _, w)

w,x,z,y ; eval({z,z),y),cont(y,m_,x),retn(V, z), cont(x, _, w)
w,x,z,y ;5 retn((z,z),y),cont(y, mi_,x),retn(V, z), cont(z, _, w)
w,x,z,y ; eval(z,y),cont(y, _,z),retn(V, z), cont(z, _, w)
w,x,z,y ; cont(z,_,y),cont(y, _,x),retn(V, z), cont(z, _, w)
w,x,z,y ; retn(V,y),cont(y, _,x),cont(z, _, w)

(V,y)
w,x,z,y ; retn(V,x),cont(x, _,w)
(V,w)

w,x, 2,y 3 retn(V,w

In the step from line 4 to line 5, two different evaluations could proceed, so
we carried them out simultaneously. At the end we arrived on the expected
return, except that a number of destinations created along the way have
accumulated. They could now be garbage-collected, leaving only the initial
w.

5 Unrestricted Variables

Unrestricted variables are tied to persistent resources in the sequent calcu-
lus and the ! A exponential connective. From the last lecture:

[u]* = (vy)uy).ly < =]
[1M]” = la(y).[M]Y
[let lu = M in N,J¥ = (vz)([M]* | x/u.][N]Y)

Again, let’s start with the elimination form. We immediately proceed with
the evaluation of M and wait for a communication opportunity along x so
we can promote the linear x to a persistent w.

eval(let lu = M in Ny, w) — Jz.eval(M, z) ® cont(x, let lu = _in Ny, w)
A term !M is a value directly, representing a replicating input.
eval(IM, x) —o retn(!M,)

When a return of !M meets its continuation, the variable x is promoted, but
M itself is not yet a candidate for evaluation. It’s only at uses of v in the

LECTURE NOTES FEBRUARY 27,2012

Substructural Operational Semantics L12.7

body N, that a new copy of M is scheduled for evaluation.
retn(!M, z) ® cont(z,let lu = _ in Ny, w) —o Ju. !retn(M, u) ® eval(N,, w)

Notice that M is persistently returned to u. This is needed because v may
be used several times in the body N,,. When u is encountered in a context
where the result is supposed to be passed to x, we span a new evaluation
of M with destination y, which is forwarded to x.

eval(u, z) —o cont(u, _,)

I'retn(M, u) ® cont(u, _,x) —o Jy.eval(M,y) ® cont(y, _, x)
Again, we may be able to optimize and eliminate the creating of y, evalu-
ating M directly with destination x.

It may be more intuitive to think of v as guarding a persistent contin-
uation with a dynamically determined destination. Then we might write
something like this:

retn(!M, z) ® cont(zx, let lu = _ in Ny, w) —o Ju. lcont(u, M, _) ® eval(Ny, w)
eval(u, x) —o retn(x, u)

retn(z, u) ® lcont(u, M, _) — Jy.eval(M,y) ® cont(y, _, z)

LECTURE NOTES FEBRUARY 27,2012

Substructural Operational Semantics L12.8

Exercises

Exercise 1 Extend the substructural operational semantics of the linear -
calculus by adding:

(i) Multiplicative pairs A ® B.
(ii) Multiplicative unit 1.
(iif) Disjunctions A @ B.
(iv) Contradiction 0.

(v) Additive unit T.

LECTURE NOTES FEBRUARY 27, 2012

Substructural Operational Semantics L12.9

References

[Pfe04] Frank Pfenning. Substructural operational semantics and linear
destination-passing style. In W.-N. Chin, editor, Proceedings of
the 2nd Asian Symposium on Programming Languages and Systems
(APLAS’04), page 196, Taipei, Taiwan, November 2004. Springer-
Verlag LNCS 3302. Abstract of invited talk.

[PS09] Frank Pfenning and Robert J. Simmons. Substructural operational
semantics as ordered logic programming. In Proceedings of the 24th
Annual Symposium on Logic in Computer Science (LICS 2009), pages
101-110, Los Angeles, California, August 2009. IEEE Computer So-
ciety Press.

LECTURE NOTES FEBRUARY 27,2012

	General Principles
	Additive Pairs
	Functions
	Example
	Unrestricted Variables
	Exercises
	References

