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We now turn our attention from the sequent calculus to natural deduction.
As we saw, sequent calculus proofs lend themselves to an interpretation as
session-typed concurrent processes. Generally speaking, natural deduction
is related to the A-calculus and therefore to functional computation. In the
next lecture we will bridge the gap between the two.

1 Linear Hypothetical Judgments

A linear hypothetical judgment has the form
r1:A1, . oA A

where we continue to use A to denote the hypotheses. All the hypotheses
must be labeled uniquely. Their order does not matter, but in accordance
with linear logic each must be used in a proof exactly once.

Unlike the sequent calculus, there are no left rules. Instead, the only
access to the linear hypotheses is via a hypothesis rule

oy
cAA P

The counterpart to the hypothesis rule is substitution.
Substitution. If A+ Aand A, z: At C then A, A" #- C.

This is called substitution because it describes an operation on proofs where
the proof of A K- A is substituted for uses of the hypothesis z: 4 in the proof
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of A’, z:A #- C. We will see this more clearly when we introduce terms rep-
resenting proofs. Unlike cut in the sequent calculus, substitution is rarely
seen as a rule.

We can also write substitution as an admissible rule:

AtHA A xAKC
AA K C

(subst)

There is a certain analogy between identity /cut and hypothesis/substitution,
but they do not correspond precisely as we may see in a later lecture.

2 Alternative Conjunction

As mentioned above, we do not obtain direct access to the hypotheses, ex-
cept through the rule hyp. This means that the left rules of the sequent
calculus have to be captured differently, somehow. No such difficulties
exist for the right rules, since (linear) hypothetical judgments also have a
distinguished conclusion.

So the right rules have exact analogues in natural deduction, called in-
troduction rules, generally denoted with the letter I.

AHA AW B
AH A&B

&I

How can we translate the left rules from the sequent calculus into rules
that operate on the conclusion of a hypothetical judgment? Recall that the
left rules tell us how to use ephemeral resources. So if we have a resource
A & B we can choose between obtaining A or obtaining B. In the form of

two rules:
A A&B A A&B

&E
Al A AK B

These elimination rules are just the inverted left rules, transported to the
conclusion of a hypothetical judgment.

3 Proof Terms

Before proceeding with the other connectives of linear logic, we add proof
terms to our hypothetical judgments. The intuition behind the Curry-Howard
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isomorphism for intuitionistic natural deduction is that proof terms corre-
spond to A-terms. In effect, they form the terms of a functional program-
ming language. Here, it will be a linear functional language. We will post-
pone applications of these until later and concentrate for now on describing
the structure of proofs.

The new judgment has the form

AFM:A

where M is a proof term.
To begin, the use of a hypothesis is just denoted by the variable that
labels the hypothesis.

—— h
Az A yp

The substitution principle just performs a substitution on the proof term.

Substitution. If A+ M : Aand A',x:AH N : C then A, A" H
[M/z]N.!

4 Pairs and Projections

As we saw earlier, a proof of A & B consists of a pair of proofs, one for A
and one for B. The proof term assignment for the &I rule is therefore just
a pair of proofs.

A M:A AHF N:B

AW (M,N): A& B

Then, the two elimination rules just extract components of these pairs.

AW M:A&B AW M:A&B

& &E
A mM: A ! AHmM:B 2

5 Local Reductions

In the sequent calculus, a cut reduction arises from a cut between a right
rule and a left rule on the same proposition. In natural deduction, a cor-
responding local reduction arises when a connective is introduced and then

'When we added term-passing to the 7-calculus we wrote this as N{M/x} which is less
common in the A-calculus.
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immediately eliminated. There counterpart to identity expansion is local ex-
pansion, whose discussion will be postponed to a future lecture.
In the case of pairs and projections, the local reductions are easy to see.
A+ M:A AKN:B
AH(M,N): A& B
&E
AHFm(M,N): A —r AFM:A

A M:A AWHN:B
AH(M,N): A& B
&I
AW mo(M,N): B —pr AWK N:B

These local reductions witness the fact that the elimination rules are not
too strong with respect to the introduction rules. We do not gain any in-
formation because we already have a justification of the conclusion of the
elimination rule. Summarizing them on proof terms:

7T1<M7N> —R M
m(M,N) —gr N

6 Simultaneous Conjunction

For the multiplicative, or simultaneous conjunction, the introduction rule
is again the same as the right rule in the sequent calculus.

AW A AW B
AN A®B

The left rule is more difficult to derive. Clearly, it would be incorrect to

write

A A®B
——— QE7?
Al A

because both A and B must be used, not just one of them. Instead, we have
to relate the fact that we can derive A® B to the hypotheses A and B, which
we can only do with a second premise.
A+ A®B A ,xz:A,y:BHC
AAKC

F
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Actually, this looks somewhat like a sequent calculus rule. If we have a
hypothesis A ® B, we can turn it into the hypotheses A and B as follows:

h
z2AQBH A® B P A, x:A,y:BH C

A, 2A@ B C

QF

Looking now at proof terms, we see that the introduction rule again re-
quires us to record a pair of proofs. This time the two sides do not share
any variables. We use the convention to replicate the propositional connec-
tive as a term former.

AFM:A A+ N:B
AANHEM@N: A® B

A M:A®B A',z:A,y:BH=N:C
AANHletz®y=MinN:C

®F

This time the local reduction induced by the elimination following the in-
troduction requires two substitutions.

A M :A Ay My:B s
&
A, Ao M @My : AR B A/,CﬂliA,l'QIBH—N:C
AL, A, N Hletzi Qo =M QMsinN:C

QL

—R
Aol My:B A, z1:A,29:BH+ N :C
A H M : A A’ Ag,z1: AW [My/xo]N : C
Ay, Ao, A" = [My /21][My/zo]N : C

subst

subst

The reduction on the terms only:

letz1 ®x0o =M @ Msin N —pR [Ml/xl][Mg/wg]N

7 Operational Semantics

At this point we might speculate a bit on the eventual operational seman-
tics we want to assign to the different pairing constructs. Intuitively, only
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one component of the pairs (A, N) will ever be used, so we should not be
computing both of them. In fact, computing both of them could violate lin-
earity, since the same linear variables will occur in M and N. So we might
expect pairs to be lazy in that (M, N) is already a value.

Conversely, pairs M ® N split all the variables between them and the
values of both components must eventually be used. Therefore we would
expect pairs M @ N to be eager, that is, a pair M ® N is a value only if M
and N are.

In the next lecture we will come back to this point to see if our expec-
tations are met. Certainly, at this point, the pure reductions should not be
considered an operational semantics, although we might expect that they
form the core of them, just like the cut reduction formed the core of 7-
calculus computation.

8 Linear Implication

We recapitulate the —R rule as an introduction rule.

A, x:AF B

7401
AH A—B

The elimination rule derives from the substitution principle and allows us
to infer B if we know A.

Al-A—-B AW A
A AW B

—oF

With proof terms, A — B is the type of a linear function from A to B. Linear
here means that it should use its argument exactly once. This does not
mean that the parameter occurs exactly once. For example, it must occur in
each part of pairs (M, N). Under the functional interpretation of A — B,
the elimination rule is just function application.

Ajx:AH-M: B ; AHFM:A—-oB AHFN:A
AW Ae.M:A—-B A AW MN:B

—o
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The reduction just uses substitution, as we might expect by now.
A x: A M: B

—of
AW Xz M:A—B ATHEN:A
A, AW (. M)N : B

—o

_>R

ANH-N:A A A-M:B
A AW [N/x]M : B

(subst)

This form of reduction is called S-reduction, going back to the original de-
velopment of the A-calculus by Church [Chu32, Chu33].

(M. M)N —pgr [N/z|M

9 Example: Interaction

As an example, we consider the interaction of linear implication with alter-
native conjunction on the right. One direction of this is

A—o (B&C)HF (A —oB)&(A—C)

We build the proof incrementally. We start using the &I rule, since we
know &R to be invertible in the sequent calculus.

24— (B&CO)A—B 2:A— (B&C)H A—C
r:A—-o (B&C)H (A —-B)&(A—C)

&I

We continue with the left subproof—the right one will be symmetric.

2:A — (B&C), AW B
r:A—o (B&C)H A—B -

I

At this point we can no longer use introduction rules in the proof of B
since it is atomic. So instead of working our way upwards in the proof con-
struction using introduction rules, we have to work our way downwards
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using elimination rules. This change of direction is characteristic of natural
deduction.
We see that we would like to use the hypothesis z.

hyp
#:A— (B&C)H A — (B&C)

24— (B&C),y:A W B
r:A—o (B&C)H A—B -

I

At this point, the elimination rule for linear implication, — E suggests itself.
This leads to two new subgoals: we have to prove A on one side and find
some use for B & C' on the other.

h :
x:Aw(B&C)H—Aw(B&C) yP A

2:A — (B&C)H B&C

2:A o (B&C),y: At B
—o]
r:A—o (B&C)H A—B

We can prove A using the hypothesis y:A, discharging one of the proof
obligations. This requires us to add y:A to the hypotheses in the subproof.

hyp
—FE

hyp —
2A— (BaC) A —-(B&C) ° yAr A
r:A— (B&C),y: A B&C

r:A— (B&C),y: At B
A (B&O)VHA—oB

1

We can close the gap using the first elimination rule for &.

hyp —— b
TA — (B&O)H A — (B&C) " yAraA P
—FK

r:A— (B&C),y: A+ B&C
r:A— (B&C),y: A B
r:A—o (B&C)H A —B

—of

LECTURE NOTES FEBRUARY 20, 2012



Natural Deduction L10.9

It is instructive to annotate the above with proof terms. We obtain the fol-
lowing;:

A — (B&C)H (\y.mi(xy), \y.m2(xy)) : (A— B) & (A — C)

We can see that a proof term is a much more compact representation of
the proof than the two-dimensional format. Some care must be taken to
guarantee that there is a bijection between the two, something we will like
not explore in this course.

10 Relation to Sequent Calculus

Of course, we would like to verify that the system of natural deduction
and the sequent calculus describe the same logic, just using different for-
mats for the inference rules, and therefore different languages for proofs.
Fortunately, these are easy to check.

Theorem 1 (From Sequent Calculus to Natural Deduction)
If A+ Athen A K- A.

Proof: By induction on the structure of the proof D of A - A. We exemplify
the proof with identity, cut, and right and left rules for linear implication.

Case:

ida

AFA

We construct:

o
A A P

Case:

Dy Dy
AlFB Ay, BFA

Ay, Ap k- A

cutp

We construct:
ih.(Dy) ih.(Do)
Al - B AQ, B A

Ap,AgF A

(subst)
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Case:

Dy
A A F A,
p— 2 R
AF A — Ay

Then we construct
i.h.(Dy)

A,.’L‘:Al H‘AQ
_ ]
AR A — Ay

Case:

D, D,
Al F B Ay, ByF A

T ALA9 B, —oBy kA

This is the interesting case, because we somehow have to turn the
application of the left rule upside-down. We construct:

D L

hyp (DY)
T:B1 — By H- By — By A1 H= By E i.h.(Dg)
Al, l‘:Bl —0 BQ H- B2 Ag,thQ = A
(subst)
A1, Ag, 2:B1 — By H- A
O

The proof in the other direction is quite straightforward as well. The
reason is the two sledgehammers of proof theory: cut and substitution.

Theorem 2 (From Natural Deduction to Sequent Calculus)
IfAH- Athen A+ A

Proof: By induction on the structure of the proof D of A - A. We show
three cases: hypothesis, as well as the introduction and elimination rules
for linear implication.

Case:

We construct:
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Case:
D/
A, x: A B

D=—"—""—"—
A A—B

I

We construct:
i.h.(D)
AAFB
Ara op B
Case:
D, Do
N A, Aol A

—R

The elimination rules are the only interesting cases. In order to apply
the left rule we need to arrange that the formula in question (here:
B — A) appears as an antecedent in a sequent. Fortunately, cut to-
gether with identity will do the job:

ih.(Dy) ”
i.h.(D;) A B AF A oL
Alf—B—OA AQ,B_OAl_A
cutp .4
NN

11 Disjunction and Units

We only summarize here the rules for disjunction and the units for com-
pleteness, together with their proof terms and reductions.
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AHFM:1 A'FN:C

— 17
11 AA'Hletl=MinN:C
— 11
AR ():T no TFE rule
A M:A AH-M:B
- ol : Bl
AHinlM:A® B AHinctM:Ad B
AHM:AoB A, AW N:C A',y:BH+P:C 5
¥
A, A" H- (case M of inlz = N |inry = P): C
AHM:0
0F
no 07 rule A, A’ H-abort M : C
The reductions, on proof terms:
letl1=Min N —r N

no reductions for T
(case inl M of inlz = N |inry = P) —pr [M/x]N
(caseinr M of inlz = N |inry = P) —pr [M/x]P

no reductions for 0

There are no reductions for T since there is no elimination form, and none
for 0 since there is no introduction form.

12 Persistence

In order to encompass persistent hypotheses into natural deduction, we
proceed exactly as for the sequent calculus. We create a new form of hy-
pothesis, u: A, which means that u of type A is a variable that can be used in
an unrestricted fashion (that is, not necessarily linearly). As in the sequent
calculus, we collect such unrestricted hypotheses into another zone of the
linear hypothetical judgment and write

I'; AR A
and

' A-M:A
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with proof terms. However, there will be no copy rule. Instead, we can
directly use an unrestricted hypothesis.
wAel

——  uh
;- Fu:A P

We also have a new form of substitution, which is analogous to cut!.

Unrestricted Substitution. IfT" ; -+ M : Aand T',uw:A ; A"
N:CthenT ; A"t [M/u]N : C.

We use the same notation, [M/u]N, even though this form of substitution
has quite different properties. In particular, it must descent into all sub-
terms, since u could occur anywhere, and could occur multiple times. In
the form of an admissible rule:

;s =M:A TYVZwA; AHN:C
I'; A'H[M/u]lN : C

usubst

13 Of Course!

The introduction rule follows the right rule, as always.

r;. - +-A

— I

;- H14
The elimination rule is somewhat like simultaneous conjunction, since it
requires a second premise

I;AR'A TLbuwA; AHC
;A A HC

'E

With proof terms, we again use the convention that the term constructor
takes the form of the type constructor (viewing here propositions as types
of functional programs).

' =M:A
I'; - =IM:1A o
The elimination rule is somewhat like simultaneous conjunction, since it
requires a second premise:
;s AHM:'A ThuwA; A N:C
;A A Hletlu=MinN:C

'E
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It is crucial that the variable in the pattern !u is an unrestricted variable.
These distinctions are completely analogous to the the distinction be-
tween linear and shared channels, although here we just think of them as
linear and unrestricted variables. Also as before, we have to add I" to all
rules in a systematic way.
The local reduction now appeals to unrestricted substitution.

r.- =mM:A
I
;- H+IM:1A F,u:A;A’H—N:C‘
\F
I;A'Hletlu=!MinN:C
—>R
;- =M:A TVZwA; AH=N:C
usubst

I'; A'H[M/ulN : C
Summarizing, just on terms:
letlwu =IMin N —pgr [M/ulN

The relation to the sequent calculus remains intact (see Exercises 5 and
6).
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Exercises

Exercise 1 Consider a version of the copy rule of the sequent calculus in

natural deduction.
FuwA; Ajx:A-C

NwA; AC

copy

Is it derivable or admissible? Give an appropriate proof term assignment.
How is it related to other rules such as uhyp?

Exercise 2 Provide proof terms for the following linear entailments, one
for each direction. You do not need to show any derivations, just the terms.

(i) A—~(B—C)4-(A®B) —C
(i) A—o (B&C)4F(A—B)&(A—C)
(iii) (A®B) - CAH- (A —-C)& (B —C)
(iv) (A& B) 4 (1A) @ (!B)
(v) A1+ A
(vi) A& T - A
(vii) A0 - A
(viii)) A& A -+ A
(ix) !'TH-1
Exercise 3 Analyze the following alternative elimination rule for ! A:

I'; - K14

- | E/

I';-H-A

How does it relate to | E? Does it create any problems in a calculus of natu-
ral deduction?

Exercise 4 Explicate the proof that sequent calculus proofs can be trans-
lated to natural deductions in the following way. Annotate antecedents
with unique variable names, similar to the way we did for our assignment
of m-calculus terms. Then annotate the right-hand side with a proof term for
natural deduction. The sequent then will have the form

ulzBl, . .,uk:Bk N (1}1:./41, . .,Q}n:An FM:A
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Of course, the property we want to achieve is that
w1:B1, ..., up:By s x1:A1, .. oA M A

This means you will have to express the essence of the proof that we can
translate from sequent calcululs to natural deduction in the term assign-
ments M. We show two examples:

' A+rM:A T';AFN:B R I'; Ay AEM : C I
& &
s AF(M,N): A&B I'; AyotA&BF [maz/y|M : C

You may confine yourselves to the connectives A ® B, A — B and !A as
well as the rules of identity and cut.

Exercise 5 Extend the theorem and proof that one can translate from se-
quent calculus to natural deduction (Theorem 1) to encompass persistence.
Show the cases for | R, ! L, copy and cut!.

Exercise 6 Extend the theorem and proof that one can translate from nat-
ural deduction to sequent calculus (Theorem 2) to encompass persistence.
Show the cases for !/, | F/, and uhyp.
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