
Lecture Notes on
Choice and Replication

15-816: Linear Logic
Frank Pfenning

Lecture 5
February 1, 2012

We continue to examine a computational interpretation of linear logic, where
propositions are session types, and proof are π-calculus processes. The ma-
terial is drawn from a recent paper by Caires et al. [CPT12], which contains
additional details and further references.

1 Offering Output

We have already seen thatA(B, offering an input, also requires output in
order to use the offer. But how do we offer an output? A natural candidate
is A ⊗ B, which is true if we can prove A and B separately, each using a
portion of the available linear hypotheses.

∆ ` A ∆′ ` B

∆,∆′ ` A⊗B
⊗R

At first glance, it would appear process offer A⊗B along x should output
two channels, one offering A and another offering B.

∆ ` P :: y : A ∆′ ` Q :: z : B

∆,∆′ ` P ? Q :: x : A⊗B
⊗R?

But we see that this doesn’t quite work: P offers along y and Q offers along
z, but neither y nor z are even mentioned in the final sequent. Looking at
the pattern of (Rwe see that we need to exploit the linearity of the channel
x along which A ⊗ B is offered. So we output only a single new channel

LECTURE NOTES FEBRUARY 1, 2012

Choice and Replication L5.2

of type A along x and then offer B, again along x. We could equally well
output a new channel of type B and then behave as A, but it seems more
natural if the continuation is on the right of the connective.

∆ ` P :: y : A ∆′ ` Q :: x : B

∆,∆′ ` (νy)x〈y〉.(P | Q) :: x : A⊗B
⊗R

Again, this is a form of bound output, but this time as part of an offer.
Conversely, to communicate with a process offering A ⊗ B along x we

have to input an A along x, after which we still have to communicate with
x now of type B.

∆, y:A, x:B ` Q :: z : C

∆, x:A⊗B ` x(y).Q :: z : C
⊗L

When we remove the process we recognize the usual left rule.

∆, A,B ` C
∆, A⊗B ` C

⊗L

We should verify the cut reduction property and see which form of process
reduction it suggests. First, on bare sequents:

∆1 ` A ∆2 ` B
∆1,∆2 ` A⊗B

⊗R
∆, A,B ` C

∆, A⊗B ` C
⊗L

∆,∆1,∆2 ` C
cut

−→

∆2 ` B
∆1 ` A ∆, A,B ` C

∆,∆1, B ` C
cut

∆,∆1,∆2 ` C
cut

We assign names and processes to the open premises:

∆1 ` P1 :: y : A
∆2 ` P2 :: x : B
∆, w:A, x:B ` Q :: z : C

With this process assignment, the reduction viewed on processes becomes:

∆,∆1,∆2 ` (νx)((νy)x〈y〉.(P1 | P2) | x(w).Q) :: z : C

−→

∆,∆1,∆2 ` (νx)(P2 | (νy)(P1 | Q{y/w})) :: z : C

LECTURE NOTES FEBRUARY 1, 2012

Choice and Replication L5.3

Again, this is a simple instance of the usual input/output reduction of the
π-calculus, modulo some structural congruences.

2 Termination

The logical constant 1 means we have no antecedents. Consequently, the
linear antecedent 1 is just replaced by the empty collection of antecedents,
which means it is just erased.

· ` 1
1R

∆ ` C

∆,1 ` C
1L

A fruitful way to think of this is as the nullary version of ⊗, since it is in
fact its unit. We would output nothing and have no continuation:

· ` x〈〉.0 :: x : 1
1R

In the π-calculus, the inactive or terminated process is represented by 0
which is the unit of parallel composition in that P | 0 ≡ P .

Conversely, we can expect nothing from an offer of 1 along x, except to
terminate the connection.

∆ ` Q :: z : C

∆, x:1 ` x().Q :: z : C
1L

The two match perfectly, with the following cut reduction.

· ` 1
1R

∆ ` C

∆,1 ` C
1L

∆ ` C
cut

−→

∆ ` C

On process expressions, labeling the open premise as ∆ ` Q :: z : C:

(νx)(x〈〉.0 | x().Q) −→ Q

This can be seen as an interaction in the polyadic π-calculus.

LECTURE NOTES FEBRUARY 1, 2012

Choice and Replication L5.4

3 Uncovering More Parallelism

Even though the assignment above perfectly fulfills our goal of a Curry-
Howard isomorphism, we have proposed some alternatives in order to
achieve more parallelism in the composition of independent processes. In
general, a process P that does not offer anything is typed as ∆ ` P :: x : 1.
Once composed with appropriate processes as required by ∆, it should be
a closed process that evolves by internal actions only. If we have a second
such process, ∆′ ` Q :: z : 1 each should be able to evolve independently,
without interaction. We could achieve this by adding x:1 to ∆′ and then
using cut.

∆ ` P :: x : 1

∆′ ` Q :: z : 1

∆′, x:1 ` x().Q :: z : 1
1L

∆,∆′ ` (νx)(P | x().Q) :: z : 1
cut

However, because of the action prefix x() guardingQ, this corresponds to a
sequential composition (P before Q) rather than a parallel composition. If we
cut the other way, we haveQ before P . In other words, we can not compose
noninteracting processes in a truly parallel manner.

There are several ways we can obtain more parallelism. One is to make
the 1L rule silent in that we have the same proof term in the premise and
conclusion [CP10]. In that case multiple different proofs collapse to the
same process, so we no longer have an isomorphism. We say that proofs
are contracted to programs, a phenomenon which also occurs in numerous
other applications of the idea underlying the Curry-Howard isomorphism.
We could also allow process reduction under a prefix, which is, however,
unusual for the π-calculus.

We briefly explore writing (x().0) | Q as the proof term for 1L, recover-
ing parallelism.

· ` x〈〉.0 :: x : 1
(1R)

∆ ` (x().0) | Q :: z : C

∆, x:1 ` Q :: z : C
(1L)

Again we give up a full isomorphism, because we cannot tell exactly at
which point 1L has been applied due to the convention that we type mod-
ulo structural congruences.

We can make corresponding improvements to other rules1. For exam-

1as suggested by Favonia in class; see also Exercise 1

LECTURE NOTES FEBRUARY 1, 2012

Choice and Replication L5.5

ple, in the ⊗R rule

∆ ` P :: y : A ∆′ ` Q :: x : B

∆,∆′ ` (νy)x〈y〉.(P | Q) :: x : A⊗B
⊗R

we notice that P can depend only on y, but not x (since it is typed in ∆ and
offers A along y). We can therefore safely rewrite it as:

∆ ` P :: y : A ∆′ ` Q :: x : B

∆,∆′ ` (νy)(P | x〈y〉.Q) :: x : A⊗B
⊗R

This allows P to reduce and even interact with its environment in ∆ in-
stead of waiting until the channel y has been sent along x. Since the only
occurrence of y is the one sent along x, communication along y will have to
wait, however, until y has been sent and the receiving process is ready to
communicate along it.

4 Example: File Indexing

We now illustrate the fragment of our system we have presented thus far
through a simple example. We will further develop the example through-
out the presentation, as we incrementally introduce the connectives that
make up the full system.

Our example consists of a simple PDF indexing service. The high-level
concept is a server that receives a PDF file from its client and then returns
an indexed version of the file (a file containing a word index for searches).
The system we have developed up to this point allows us to model such a
server with the following type:

Idx , file ((file⊗ 1)

We abstract away the details of what constitutes a proper PDF file with
the type file. The type Idx describes the communication behavior that is
expected of the server: it will first perform an input (of the file), followed
by an output of a file, after which it terminates. A process that implements
such a service along channel x is:

Srv , x(f).(νy)x〈y〉.(Py | x〈〉.0) :: x : Idx

We abstract away the details of the actual indexing of the file in the process
Py. The subscript here indicates that P will depend on y. A possible client

LECTURE NOTES FEBRUARY 1, 2012

Choice and Replication L5.6

for the server is given below (where the processQ represents the clients use
of the indexed files):

Client , (νp)x〈p〉.x(i).x().Qp,i

and we can compose the server and the client as follows:

· ` Srv :: x : Idx x : Idx ` Client :: z : 1

· ` (νx)(Srv | Client) :: z : 1
cut

5 Taking Stock, Part I

Let’s look at the fragment of the logic so far. If we take the faithful interpre-
tation of 1, we have on the process side:

Types A,B,C ::= A(B input
| A⊗B output
| 1 termination

Processes P,Q ::= [x↔ z] forwarding
| (P | Q) parallel composition
| (νx)P name restriction
| x(y).P input
| (νy)x〈y〉.P bound output
| x().P wait
| x〈〉.0 termination

We also have the following reductions on well-typed processes, mimick-
ing cut reductions. The typing requirement implies some straightforward
conditions on the occurrences of bound variables which we do not detail
separately.

Structural (νx)([y ↔ x] | Q) −→ Q{y/x}
(νx)(P | [x↔ z]) −→ P{z/x}

Interaction (νx)(x(y).P | (νw)x〈w〉.Q)
−→ (νx)(νw)(P{w/y} | Q)

Termination (νx)(x〈〉.0 | x().Q) −→ Q

and the following structural congruences, in addition to standardα-conversion:

P | (Q | R) ≡ (P | Q) | R
P | Q ≡ Q | P
P | (νx)Q ≡ (νx)(P | Q) for x 6∈ fn(P)
(νx)(νy)P ≡ (νy)(νx)P

LECTURE NOTES FEBRUARY 1, 2012

Choice and Replication L5.7

If we use the optimized form of 1, we replace x().P by x().0. We also need
to add the congruences P | 0 ≡ P and (νx)0 ≡ 0.

6 External Choice

Branching, or external choice, means to offer both A and B along a channel
and let the client decide which one to use. We add a binary guarded choice
to the process calculus [SW01] and additive conjunction ANB to our frag-
ment of linear logic. Since only either A or B will be used (at the client’s
discretion), the context is propagated to both premises. Conversely, ifANB
is in the environment, we have to chose either A or B.

∆ ` A ∆ ` B
∆ ` ANB

NR

∆, A ` C
∆, ANB ` C

NL1

∆, B ` C
∆, ANB ` C

NL2

When assigning process terms we again exploit linearity of channels. We
indicate a choice (inl or inr) on a channel and then continue on the same
channel with either A or B, respectively.

∆ ` P :: x : A ∆ ` Q :: x : B

∆ ` x.case(P,Q) :: x : ANB
NR

∆, x:A ` Q :: z : C

∆, x:ANB ` x.inl;Q :: z : C
NL1

∆, x:B ` Q :: z : C

∆, x:ANB ` x.inr;Q :: z : C
NL2

Reduction is also straightforward. In particular, process reduction and
proof reduction match perfectly. We leave the details for the reader to re-
construct.

(νx)(x.case(P,Q) | x.inl;R) −→ (νx)(P | R)
(νx)(x.case(P,Q) | x.inr;R) −→ (νx)(Q | R)

7 Internal Choice

Choice, more precisely internal choice, means to offer either A or B along a
channel x, the offering process is the one to decide. A party using x must

LECTURE NOTES FEBRUARY 1, 2012

Choice and Replication L5.8

therefore be prepared for both A and B. We do not need to extend the
process language for this, having already added binary guarded choice,
but we need A⊕B as an appropriate logical connective.

∆ ` A
∆ ` A⊕B

⊕R1
∆ ` B

∆ ` A⊕B
⊕R2

∆, A ` C ∆, B ` C
∆, A⊕B ` C

⊕L

We present the process assignment with the guarded choice.

∆ ` P :: x : A

∆ ` x.inl;P :: x : A⊕B
⊕R1

∆ ` P :: x : B

∆ ` x.inr;P :: x : A⊕B
⊕R2

∆, x:A ` P :: z : C ∆, x:B ` Q :: z : C

∆, x:A⊕B ` x.case(P,Q) :: z : C
⊕L

The reduction was already discussed for branching.

8 Example: File Indexing Revisited

We now extend our PDF indexer to incorporate branching and choice, em-
bodied in the types N and ⊕. The server so far only implements a single
service: indexing. Conceivably, a server implements multiple services. For
instance, we might want the server to check whether an indexed PDF is in-
deed indexed correctly. This verification service can be modelled through
the following type:

Verif , file ((1⊕ 1)

The verification service inputs the pdf file that is to be verified and then
will either send inl or inr, indicating whether the file is valid or not. This
form of choice that is internal to the server is modelled by the use of ⊕. A
process implementing the verification service is (along channel x):

· ⇒ x(f).Check :: x : Verif

LECTURE NOTES FEBRUARY 1, 2012

Choice and Replication L5.9

with Check :: x : 1 ⊕ 1 depending on the validity of the received file. To
include this service in our original example, we make use of N to obtain:

Srv , Idx N Verif

And the process offering the two services becomes

· ⇒ x.case(Srv, x(f).Check) :: x : Srv

A client that wishes to use the verification service must then choose accord-
ingly (and branch on the two possibilities, abstracted here by the processes
Pok and Pnok):

Client , x.inr; (νp)x〈p〉.x.case(Pok, Pnok)

9 Replication

So far, the logic we have considered is purely linear. In order to capture
process replication, we will need the proposition !A as a type. A process
offering a service !A along x is offering the service A persistently: clients
may use A as many times as they would like, including not at all. The
judgmentally sound way to capture this logically uses persistent resources.

B1, . . . , Bk︸ ︷︷ ︸
Γ

persistent

; A1, . . . An︸ ︷︷ ︸
∆

ephemeral

` C

When we label the sequents with channels and processes, not much changes.
We use a different kind of letter, u, to stand for shared channels. They may
occur arbitrarily often in the process P , unlike the linear channels.

u1:B1, . . . , uk:Bk ; x1:A1, . . . , xn:An ` P :: z : C

All the rules we have shown so far are extended to allow a context Γ of per-
sistent antecedents in the conclusion and all premises. This context satisfies
weakening, contraction, and exchange, according to the persistent nature
of the assumptions in them. We will use these properties silently.

LECTURE NOTES FEBRUARY 1, 2012

Choice and Replication L5.10

10 Cut as Composition Revisited

Persistent truth is defined as truth not depending on ephemeral assump-
tions. Therefore we have a new rule of cut to eliminate a persistent an-
tecedent A from a sequent, where one premise is a proof of A with no linear
antecedents. This allows us to use this premise each time the persistent A is
used, without violating any linearity constraints.

Γ ; · ` A Γ, A ; ∆ ` C
Γ ; ∆ ` C

cut!

It is straightforward to annotate the premises with channels and processes,
but what about the conclusion?

Γ ; · ` P :: x : A Γ, u:A ; ∆ ` Q :: z : C

Γ ; ∆ ` ? :: z : C
cut!

The idea is for a shared channel u to represent the offer of a replicated input.
What u receives is a channel x of type A along which a single session of type
A can proceed. Meanwhile, u remains available to receive another channel
of type A. Each use of A is satisfied by a different copy of P , as we will see.
So:

Γ ; · ` P :: x : A Γ, u:A ; ∆ ` Q :: z : C

Γ ; ∆ ` (νu)(!u(x).P | Q) :: z : C
cut!

Here, !u(x).P is the π-calculus notation for a replicated input that persists
even as it inputs a channel y for x.

Based on this intuition we have to send u a new channel y:A in order
to use u. This is realized in the copy rule. Logically, it is justified by saying
that persistent truth entails ephemeral truth.

Γ, u:A ; ∆, y:A ` P :: z : C

Γ, u:A ; ∆ ` (νy)u〈y〉.P :: z : C
copy

What happens if a cut! meets a copy? Logically, this is straightforward: we

LECTURE NOTES FEBRUARY 1, 2012

Choice and Replication L5.11

spawn two new cuts.

Γ ; · ` A
Γ, A ; ∆, A ` C

Γ, A ; ∆ ` C
copy

Γ ; ∆ ` C
cut!

−→

Γ ; · ` A
Γ ; · ` A Γ, A ; ∆, A ` C

Γ ; ∆, A ` C
cut!

Γ ; ∆ ` C
cut

The first one is considered smaller because the right subproof is shorter;
the second one takes place on a smaller judgment (A linearly true vs. A
persistently true). If we annotate these with processes, we have the open
premises

Γ ; · ` P :: x : A
Γ, u:A ; ∆, y:A ` Q :: z : C

Replaying the proof reduction on the assigned processes yields:

(νu)(!u(x).P | (νy)u〈y〉.Q)

−→ (νy)(P{y/x} | (νu)(!u(x).P | Q))

With some structural congruences we obtain a familiar reduction for repli-
cated input, in this case interacting with a bound output.

We also have to consider some additional interactions of the new judg-
mental rules with the old ones, specifically cut and identity. These are com-
muting conversions or structural equivalences between proofs, exchanging
different forms of cut; on the π-calculus side they are behavioral equiv-
alences called sharpened replication theorems [SW01]. We omit the details
which can be found in [CP10].

So far, all the rules and reductions arose entirely from considerations at
the level of judgments—we did not even introduce the !A connective yet!

11 Sharing

After preparing the grounds by analyzing the judgment of persistent truth
associated with shared channels, we can now internalize the judgment with
the corresponding proposition !A. The !R rule just requires the proof of the

LECTURE NOTES FEBRUARY 1, 2012

Choice and Replication L5.12

premise not to depend on linear assumptions. The !L rule just promotes
the linear antecedent !A to the persistent antecedent A.

Γ ; · ` A
Γ ; · ` !A

!R
Γ, A ; ∆ ` C
Γ ; ∆, !A ` C

!L

From the process perspective, !R introduces a replicated input, while !L
just corresponds to promoting a channel from linear to shared status.

Γ ; · ` P :: y : A

Γ ; · ` !x(y).P :: x : !A
!R

Γ, u:A ; ∆ ` Q :: z : C

Γ ; ∆, x:!A ` x/u.Q :: z : C
!L

In order to retain an isomorphism between proofs and processes, and also
respect the linearity of channels x, we have an explicit renaming construct
x/u.Q which binds u with scope Q. This is just an explicit substitution, for
typing purposes, mapping into Q{x/u}.

We have to check that these rule match up. Fortunately, a cut at type !A
turns into a cut! at type A.

Γ ; · ` A
Γ ; · ` !A

!R
Γ, A ; ∆ ` C
Γ ; ∆, !A ` C

!L

Γ ; ∆ ` C
cut

−→
Γ ; · ` A Γ, A ; ∆ ` C

Γ ; ∆ ` C
cut!

If we annotate these with process expressions, we see that it just renames a
bound variable and removes an explicit renaming construct.

(νx)(!x(y).P | x/u.Q) −→ (νu)(!u(y).P | Q)

We will have additional examples in the next lecture.

12 Taking Stock, Part II

The extension of the calculus by internal and external choice and replica-
tion does not create any new difficulties. Much of the computational con-
tent for replication is associated with the judgmental rules, rather than the
proposition !A itself.

LECTURE NOTES FEBRUARY 1, 2012

Choice and Replication L5.13

We extend the syntax and the reductions.

Types A,B,C ::= . . .
| ANB external choice
| A⊕B internal choice
| !A replication

Processes P,Q ::= . . .
| x.inl;P | x.inr;P selection
| x.case(P,Q) branching
| !u(x).P replicating input
| x/u.P promotion

We also have the following new reductions

(Structural) (νx)(!x(y).P | x/u.Q) −→ (νu)(!u(y).P | Q)

Choice (νx)(x.case(P,Q) | x.inl;R) −→ (νx)(P | R)
(νx)(x.case(P,Q) | x.inr;R) −→ (νx)(Q | R)

Replication (νu)(!u(x).P | (νy)u〈y〉.Q)
−→ (νy)(P{y/x} | (νu)(!u(x).P | Q))

LECTURE NOTES FEBRUARY 1, 2012

Choice and Replication L5.14

Exercises

Exercise 1 Explore if the technique of uncovering additional parallelism in
1L and ⊗R from Section 3 also applies to (L. If so, present the modified
rule and an example where it could make a difference.

Exercise 2 Explore the process interpretations of 0 and >, the units of ⊕ and N.

Exercise 3 We have the following interaction laws for !

(i) !!A a` !A

(ii) !(ANB) a` (!A)⊗ (!B)

In each case, give the sequent proofs in both directions. Then exhibit the
process interpretation of your four proofs by giving a P such that x:L ` P ::
z : R, where L is left-hand side and R is the right-hand side of the sequent.

Give an intuitive reading of each direction under the process interpre-
tation.

Exercise 4 The identity expansions of the linear sequent calculus have no
direct computational interpretation via reduction, but they do capture some
process equivalences. Explain this informally using the example of the
identity expansions for A (B and !A. In other words, explain how the
process assignment for the identity rule at these two types is related to the
process assigned to its identity expansion.

Exercise 5 We explore a variation of the coin exchange example from Sec-
tion 7 of Lecture 4. Return to original formulation, using a persistent

u : d⊗ d⊗ n (q

and give the process assignment that demonstrates how two dimes and a
nickel can be exchanged for a quarter.

Then add a persistent v : d (n ⊗ n and exhibit the process that ex-
changes three dimes x1, x2 and x3 to offer a quarter and a nickel (q ⊗ n)
along z.

You may use the channel output abbreviation introduced in Lecture 4
as appropriate to simplify the process expression.

LECTURE NOTES FEBRUARY 1, 2012

http://www.cs.cmu.edu/~fp/courses/15816-s12/lectures/04-reduction.pdf

Choice and Replication L5.15

References

[CP10] Luı́s Caires and Frank Pfenning. Session types as intuitionistic
linear propositions. In Proceedings of the 21st International Confer-
ence on Concurrency Theory (CONCUR 2010), pages 222–236, Paris,
France, August 2010. Springer LNCS 6269.

[CPT12] Luı́s Caires, Frank Pfenning, and Bernardo Toninho. Towards
concurrent type theory. In B. Pierce, editor, Proceedings of the
Workshop for Types in Language Design and Implementation, TLDI’12,
pages 1–12, Philadelphia, Pennsylvania, January 2012. ACM.
Notes for an invited talk.

[SW01] Davide Sangiorgi and David Walker. The π-Calculus: A Theory of
Mobile Processes. Cambridge University Press, 2001.

LECTURE NOTES FEBRUARY 1, 2012

	Offering Output
	Termination
	Uncovering More Parallelism
	Example: File Indexing
	Taking Stock, Part I
	External Choice
	Internal Choice
	Example: File Indexing Revisited
	Replication
	Cut as Composition Revisited
	Sharing
	Taking Stock, Part II
	Exercises
	References

