
Lecture Notes on
Cut Reduction as Computation

15-816: Linear Logic
Frank Pfenning

Lecture 4
January 30, 2012

In this lecture we will examine a computational interpretation of linear
logic in its sequent formulation. We largely follow a recent paper by Caires
et al. [CPT12], which contains additional details and further references. The
basic idea is that propositions correspond to session types [Hon93], proofs to
process expressions in the π-calculus [MPW92], and cut reduction to pro-
cess reduction. We do not assume that you already know the π-calculus,
although clearly it will be easier to follow the lecture if you do.

1 Interpreting Judgments

In a functional setting, the basic judgment is generally of the form M :
A, meaning either that M is a proof of A, or M is a term of type A. In
the setting of communicating processes, it is unclear what it would mean
to say that “P is a process of type A”. Processes communicate with their
environment, so we write instead P :: x : A, meaning P is a process offering
service A along channel x. The channel here is considered a variable with
scope P , so we can rename it as P{y/x} :: y : A if y is not already used in P .
As is customary, we will perform such renamings silently as appropriate.

Processes are uninteresting unless they are placed in a context where
they not only offer services, but also use services offered by other processes.
We write a sequent

x1:A1, . . . , xn:An ` P :: x : A

to express that process P offers service A along x when composed with
processes Pi providing Ai along xi for 1 ≤ i ≤ n. All the variables xi

LECTURE NOTES JANUARY 30, 2012



Cut Reduction as Computation L4.2

must be distinct. This just a decoration of a sequent ∆ ` A that labels the
conclusion as well as all resources in ∆ uniquely. We continue to write ∆
for the resources, now labeled by channels.

Offering and using services are counterparts, but they are not the same.
Therefore, formally, the judgment x:A on the right of the sequent and the
judgment xi:Ai on the left should be considered different. Since we can
always tell by position which one is meant, we use the same notation for
both.

Processes evolve through interactions along channels. Interacting on
a channel xi therefore engenders a change of state, and the same channel
cannot be used again with the same type. Therefore the turnstile symbol ‘`’
denotes a linear hypothetical judgment [CCP03] where each antecedent must
be used exactly once. Therefore the context is not subject to weakening or
contraction, but reordering is permitted since antecedents are identified by
unique names.

Even without defining any particular kind of service, some principles
should hold for the judgments in general. We discuss these first, because
they are an important guide to the rest of the development.

2 Cut as Composition

When a process P offers serviceA along x, and another processQ uses a ser-
vice A along x, the two can be composed so that they communicate along
x.

∆ ` P :: x : A ∆′, x:A ` Q :: z : C

∆,∆′ ` (νx)(P | Q) :: z : C
cut

The process expression for the composition puts P and Q together in a par-
allel composition (P | Q), sharing x as a private channel, as indicated by the
name restriction (νx). Note that this rule entails some implicit renaming, be-
cause the channel along which P offersAmust be equated with the channel
along which Q uses A. In the π-calculus, (νx)P is a binder for the variable
x with scope P .

Viewed from the purely logical perspective, this is simply the rule of cut
in linear logic:

∆ ` A ∆′, A ` C

∆,∆′ ` C
cut

It is a little unusual that we use an intuitionistic version of linear logic with
a singleton right-hand side in a sequent formulation. This is not absolutely

LECTURE NOTES JANUARY 30, 2012



Cut Reduction as Computation L4.3

essential (see [Abr93] for a related classical counterpart), but it streamlines
the judgmental justification of the system. It also reflects an intrinsic asym-
metry between offering and using a service, even though we will see they
are strongly related. It will also be beneficial in developing a dependent
type theory.

3 Identity as Forwarding

One way to fulfill the promise of A along x is to just use a channel y that in
turn promises A. This just corresponds to the identity rule.

y:A ` [y ↔ x] :: x : A
id

There is no standard notation for forwarding in the π-calculus, so we write
[y ↔ x] to forward between y and x. We can implement the forwarding be-
havior in the untyped π-calculus, but it is convenient to have it as a primi-
tive for the session type discipline.

In accordance with the linear hypothetical judgment, the antecedent y:A
must be the only one. In purely logical form:

A ` A
id

In summary, cut and identity connect offers and uses of services. Cut
composes a process P that offersA along xwith a process that usesA along
x, making x a private channel (νx)(P | Q). Identity uses a channel y sup-
plying A to satisfy its own offer of x along A, [y ↔ x]. These general princi-
ples are not connected to any particular services, which will be associated
with logical connectives.

4 Composing Cuts

Multiple parallel compositions should be required to synchronize only to
the extent that their interactions require it. Proof-theoretically, this means
that the order of consecutive cuts should be insignificant. The correspond-
ing laws have no inherent orientation as rewrite rules, so we think of them
as structural proof equivalences. We leave it to the reader to write out

LECTURE NOTES JANUARY 30, 2012



Cut Reduction as Computation L4.4

the simple proof figures. On the process calculus we obtain correspond-
ing structural congruences.

(νx)((νy)(P | Q) | R) ≡ (νy)(P | (νx)(Q | R))
provided x 6∈ fn(P ), y 6∈ fn(R)

(νx)(P | (νy)(Q | R)) ≡ (νy)(Q | (νx)(P | R))
provided x 6∈ fn(Q), y 6∈ fn(P )

These can be derived from more fundamental structural equivalences of
associativity of parallel composition and scope extrusion.

(P | Q) | R ≡ P | (Q | R) associativity
P | Q ≡ Q | P commutativity
P | (νx)Q ≡ (νx)(P | Q) scope extrusion

provided x 6∈ fn(P )

The last rule comes with a side condition, namely that the variable x is not
among the free names in P . Since (νx) is a binder, this just makes sure
that two different variables with the same name are not confused. We can
always (silently) rename the bound variable to allow the scope extrusion to
happen in case there is a conflict.

In general, we identify processes up to structural congruence. Other
approaches are possible, but this is convenient for our purposes here. A
disadvantage of this approach is that some care is needed in implementing
an algorithm for type-checking processes, because we may need to rear-
range expressions by structural congruences first, before the typing rule
becomes applicable.

5 Input

We approach the individual logical connectives by thinking of their mean-
ing as defined by their right rules in the sequent calculus. In their process
interpretation, we have to analyze what it means to offer a particular service
along a channel. Linear implication A ( B is true if B is true under the
(linear) assumption A.

∆, A ` B
∆ ` A( B

(R

Reading the premise under the process interpretation

∆, y:A ` P :: x : B

LECTURE NOTES JANUARY 30, 2012



Cut Reduction as Computation L4.5

it says that P offers B along x if provided with the opportunity to use A
along y. So a process offering A( B must input an A and then offer B.

∆, y:A ` P :: x : B

∆ ` x(y).P :: x : A( B
(R

Note that we use the same channel name x for the service A( B and then
the service B. This is possible because channels are linear. Once we input
an A along x, we can not input another along x. Instead, the channel x
changes state. This is the origin of the term session types (or, more broadly,
behavioral types) for this kind of system. The type A( B describes the type
of a session that inputs an A and then behaves like B.

Under this definition, how can we use a channel x of type A ( B? We
have to output an A along x. In return, we assume that x now offers B. But
what precisely does it mean to “output an A”? In the π-calculus we do not
pass processes, we pass names that provide access to processes. So we must
have a process P offering A along y and then output that y along x.

∆ ` P :: y : A ∆′, x:B ` Q :: z : C

∆,∆′, x:A( B ` (νy)x〈y〉.(P | Q) :: z : C
(L

Note that each channel in the context must be used either in P or in Q, but
not both. This is essential to maintain the linearity in the use of channels.
Also, the channel y along which P must offer A must be bound in the con-
clusion, so that there cannot be confusion with any other channel. In the
π-calculus this is called a bound output, which always outputs a fresh name.
Note also that P and Q do not share any names, so they do not communi-
cate with each other directly.

If we strip the process expressions, we obtain just the usual left rule for
linear implication in the linear sequent calculus.

∆ ` A ∆′, B ` C

∆,∆′, A( B ` C
(L

6 Reduction

We can define right and left rules in the sequent calculus at will, but to form
a coherent logical system they must match appropriately. As a global the-
orem about a logic, the theorems witnessing such coherence are cut elimi-
nation and identity. These decompose into two local properties, separately

LECTURE NOTES JANUARY 30, 2012



Cut Reduction as Computation L4.6

for each connective, namely cut reduction and identity expansion. Cut re-
duction corresponds to process reduction, while identity expansion shows
how to reduce channel forwarding at complex types to forwarding at sim-
pler types.

We first consider cut reduction in the sequent calculus. We want to
show that the right and left rules match. This means that if we have a cut
where the cut formula was just introduced by its left and right rules, then
we can reduce it to cuts on subformulas. For linear implication we have

∆, A ` B

∆ ` A( B
(R

∆1 ` A ∆2, B ` C
∆1,∆2, A( B ` C

(L

∆,∆1,∆2 ` C
cut

−→
∆1 ` A ∆, A ` B

∆,∆1 ` B
cut

∆2, B ` C
∆,∆1,∆2 ` C

cut

To obtain a process interpretation of this reduction, we first assign names
and processes to the three premises:

∆, y:A ` P1 :: x : B
∆1 ` P2 :: w : A
∆2, x:B ` Q :: z : C

The annotated conclusions before and after the reduction then are:

∆,∆1,∆2 ` (νx)(x(y).P1 | (νw)(x〈w〉.(P2 | Q))) :: z : C

−→

∆,∆1,∆2 ` (νx)((νw)(P2 | P1{w/y}) | Q) :: z : C

In order to read this more easily, we can apply the structural congruences
of the π-calculus, extruding the bindings on x and w and exchanging P1

and P2:

∆,∆1,∆2 ` (νx)(νw)(x(y).P1 | x〈w〉.(P2 | Q)) :: z : C

−→

∆,∆1,∆2 ` (νx)(νw)(P1{w/y} | P2 | Q) :: z : C

LECTURE NOTES JANUARY 30, 2012



Cut Reduction as Computation L4.7

We see that in the presence of the structural rules, the cut reduction is mir-
rored by a process reduction, matching an input with a corresponding out-
put. In general, it is an instance of the reduction

(x(y).P | x〈w〉.Q) −→ (P{w/y} | Q)

7 Example: Coin Exchange

In this simple example we see which process expression corresponds to
exchanging two dimes and a nickel for a quarter. Recall that we write the
rule as d⊗d⊗n ( q. Unfortunately, we have not yet discussed the process
interpretation of simultaneous conjunction (⊗), but there is an isomorphic
formulation without it:

d ( (d ( (n ( q))

The relationship between the two is called Currying, honoring the logician
Curry who used this transformation (even if he did not invent it). Let’s
prove that with two dimes and a nickel, we can obtain a quarter if we have
a single copy of the above.

d ` d
id

d ` d
id

n ` n
id

q ` q
id

n, n ( q ` q
(L

d, n, d ( (n ( q) ` q
(L

d, d, n, d ( (d ( (n ( q)) ` q
(L

We now assign channel names, and then processes. Let’s start at the bot-
tom. We label our resources xi, which we interpret as names for the coins
we own. The coin exchange service is labeled x, and the name of the quar-
ter we want to obtain is z.

x1:d, x2:d, x3:n, x:d ( (d ( (n ( q)) ` P :: z : q

We have written P as a placeholder for the process we still want to con-
struct. Let’s take one step in the bottom-up construction of this proof, and
also fill in the identity.

x1:d ` [x1 ↔ y1] :: y1 : d
id

x2:d, x3:n, x:d ( (n ( q) ` P ′ :: z : q

x1:d, x2:d, x3:n, x:d ( (d ( (n ( q)) ` (νy1)x〈y1〉.([x1 ↔ y1] | P ′) :: z : q
(L

LECTURE NOTES JANUARY 30, 2012



Cut Reduction as Computation L4.8

Notice that this determines the shape of P , although P ′ remains as an un-
known, to be determined by further proof construction. Of course, the next
step is essentially the same as the previous one:

x2:d ` [x2 ↔ y2] :: y2 : d
id

x3:n, x:n ( q ` P ′′ :: z : q

x2:d, x3:n, x:d ( (n ( q) ` (νy2)x〈y2〉.([x2 ↔ y2] | P ′′) :: z : q
(L

Focusing in again on the second premise, we can now complete the proof.

x3:d ` [x3 ↔ y3] :: y3 : d
id

x:q ` [x↔ z] :: z : q
id

x3:n, x:n ( q ` (νy3)x〈y3〉.([x3 ↔ y3] | [x↔ z]) :: z : q
(L

The overall process expression is now:

(νy1)x〈y1〉.([x1 ↔ y1]
| (νy2)x〈y2〉.([x2 ↔ y2]
| (νy3)x〈y3〉.([x3 ↔ y3]
| [x↔ z])))

We can abbreviate (νy)x〈y〉.([x′ ↔ y] | P ) = x〈x′〉.P , since in the above in-
ference pattern x′ nor y can appear in P . Essentially, the use of the identity
turns the bound output into a regular output. Then in the judgment

x1:d, x2:d, x3:n, x:d ( (d ( (n ( q)) ` P :: z : q

the process term P can be written as

x〈x1〉.x〈x2〉.x〈x3〉.[x↔ z]

Reading it out, it means: “send x1, then x2, then x3, all along x, and then
forward x to z”. Since x1 and x2 are dimes, and x3 is a nickel, while x and z
are names for quarters, this makes sense.

LECTURE NOTES JANUARY 30, 2012



Cut Reduction as Computation L4.9

Exercises

Exercise 1 Write out the ways in which two consecutive cuts on unrelated
propositions A and B can be permuted without changing the conclusion.
Which structural congruences on associated processes does this entail?

Exercise 2 The cut reduction given for (R against (L is just one of two
possibilities.

(i) Show the other possible cut reduction.

(ii) Show the process assignment before and after the alternative cut re-
duction.

(iii) Discuss its relationship to the one shown in Section 6.

Exercise 3 In Section 7 we introduced the abbreviation (νy)x〈y〉.([x′ ↔ y] |
P ) = x〈x′〉.P under certain conditions. This can be seen as a process term
assignment for a derived rule of inference. Determine this derived rule of
inference, and read off the conditions under which the abbreviation above
makes sense.

Exercise 4 We expand on the example in Section 7. Assume thats besides
x:d ( (d ( (n ( q)) we also have w:n ( (n ( d) for changing two
nickels into a dime. Show a process term for changing five nickels xi:n for
1 ≤ i ≤ 5 into a quarter z : q. You may use the abbreviated notation for
output that is not bound, if appropriate.

LECTURE NOTES JANUARY 30, 2012



Cut Reduction as Computation L4.10

References

[Abr93] Samson Abramsky. Computational interpretations of linear
logic. Theoretical Computer Science, 111:3–57, 1993.

[CCP03] Boy-Yuh Evan Chang, Kaustuv Chaudhuri, and Frank Pfenning.
A judgmental analysis of linear logic. Technical Report CMU-
CS-03-131R, Carnegie Mellon University, Department of Com-
puter Science, December 2003.

[CPT12] Luı́s Caires, Frank Pfenning, and Bernardo Toninho. Towards
concurrent type theory. In B. Pierce, editor, Proceedings of
the Workshop for Types in Language Design and Implementation,
TLDI’12, pages 1–12, Philadelphia, Pennsylvania, January 2012.
ACM. Notes for an invited talk.

[Hon93] Kohei Honda. Types for dyadic interaction. In 4th International
Conference on Concurrency Theory, CONCUR’93, pages 509–523.
Springer LNCS 715, 1993.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus
of mobile processes. Information and Computation, 100(1):1–77,
September 1992. Parts I and II.

LECTURE NOTES JANUARY 30, 2012


	Interpreting Judgments
	Cut as Composition
	Identity as Forwarding
	Composing Cuts
	Input
	Reduction
	Example: Coin Exchange
	Exercises
	References

