
Lecture Notes on
From Rules to Propositions

15-816: Linear Logic
Frank Pfenning

Lecture 2
January 18, 2012

We review the ideas of ephemeral truth and linear inference with another
example from graph theory: constructing spanning trees for graphs. Then
we probe the boundaries of what can be expressed in linear inference alone
and start down the path of defining linear logical connectives in the form a
sequent calculus. We also consider a first set of conditions to make sure the
connectives are meaningful.

1 Example: Spanning Trees

A spanning tree for a connected graph is a graph that has the same nodes
but only a subset of the edges such that there is no cycle. In order to define
rules for constructing a spanning tree for a graph we will simultaneously
manipulate two graphs: the original graph and its spanning tree. We there-
fore add a third argument to our representation of graphs (from Lecture 1)
which identifies which graph a node or edge belongs to.

node(x, g) x is a node in graph g
edge(x, y, g) there is an edge from x to y in graph g

The rule of symmetry stays within one graph g:

edge(x, y, g)

edge(y, x, g)
sym

Now assume we have a graph g and want to build a spanning tree t. Here
is a simple algorithm for building t. We begin by picking an arbitrary node

LECTURE NOTES JANUARY 18, 2012

http://www.cs.cmu.edu/~fp/courses/15816-s12/lectures/01-inference.pdf

From Rules to Propositions L2.2

x from g and create t with x as its only node. Now we repeatedly pick an
edge that connects a node x already in the tree with a node y not yet in the
tree and add that edge and the node y into the tree. When no such edges
exist any more, we either must have a spanning tree already or the original
graph was not connected. We can determine this, for example, by checking
if there are any nodes left in the graph that haven’t been added to the tree.

This algorithm has two kinds of steps, so its representation in linear
logic has two rules. The first step moves an arbitrary node from the graph
to the tree.

node(x, y, g)

node(x, y, t)
start?

This rule can be used only once, at the very beginning of the algorithm and
must be prohibited afterwards, or we could just use it to move all nodes
from the graph to the tree without moving any edges. So we can either say
the rule must be ephemeral itself, or we create a new ephemeral proposition
init which only exists in the initial state and is consumed by the first step.

init node(x, g)

node(x, t)
start

The next rule implements the idea we described in the text above. All
propositions are ephemeral, so we can implement “a node y not yet in the
tree” by checking whether it is still in the graph, thereby consuming it.

node(x, t) edge(x, y, g) node(y, g)

node(x, t) edge(x, y, t) node(y, t)
move

A proof using these two rules describes a particular sequence of moves,
taking edges from the graph and adding them to the spanning tree.

In order to convince ourselves that this is correct, it is important to un-
derstand the state invariants. Initially, we have

init
node(x, g) for every node x in g
edge(x, y, g) for every edge from x to y in g

Rule move does not apply, because we do not yet have a node in t, so any
inference must begin with rule start, consuming init and producing one
node x0 in t.

node(x0, t) for some node x0
node(x, g) for every node x 6= x0 in g
edge(x, y, g) for every edge from x to y in g

LECTURE NOTES JANUARY 18, 2012

From Rules to Propositions L2.3

Now rule start can no longer be applied, and we apply move as long as
we can. The rule preserves the invariant that each node x from the initial
graph is either in t (node(x, t)) or in g (node(x, g)). It further preserves the
invariant that each edge in the original graph is either in t (edge(x, y, t)) or
still in g (edge(x, y, g)).

If the algorithm stops and no nodes are left in g, we must have moved
all n nodes originally in g. One is moved in the start rule, and n − 1 are
moved in applications of the move rule. In every application of the move
rule we also move exactly one edge from g to t, so t now has n nodes and
n − 1 edges. Further, it is connected since anytime we move an edge it
connects to something already in the partial spanning tree. A connected
graph with n nodes and n− 1 edges must be a tree, and it spans g because
it has all the nodes of g.

If the algorithms stops and there are some nodes left in g, then the orig-
inal graph must have been disconnected. Assume that g is connected, y is
left in g, and we started with x0 in the first step. Because g is connected,
there must be a path from x0 to y. We prove that this is impossible by in-
duction on the structure of this path. The last edge connects some node y′

to y. If y′ is in the tree, then the rule move would apply, but we stipulated
that the algorithm only stops if move does not apply. If y′ is in the graph
but not in the tree, then we apply the induction hypothesis to the subpath
from x0 to y′.

2 Example: Beggars

The mechanism of inference we have introduced so far is quite elegant and
already expressive. However, it has shortcomings. Notationally, it can be
awkward to write down proofs. More importantly, there are some natural
patterns of reasoning we would like to express and cannot because we have
no logical connectives. Here is one example:

If wishes were horses, beggars would ride. — English proverb

Let’s start by analyzing “if wishes were horses”. We can represent that by a
(persistent) rule

wish(x)

horse(x)

Here we have made wishes ephemeral and horses (or, perhaps, the intrinsic
attribute for x to be a horse) persistent. This rule is schematic in x. Let’s

LECTURE NOTES JANUARY 18, 2012

From Rules to Propositions L2.4

complete our vocabulary

horse(x) x is a horse
wish(x) x is a wish
beggar(x) x is a beggar
rides(x, y) x rides y

How would we say “beggars would ride”? We might make things more ex-
plicit by stating that for every y who is a beggar there is a horse z such that
y rides z. Unfortunately, the whole statement requires “wishes were horses”
to appear as a premise and “beggers would ride” as a conclusion, which is
outside the scope of the inference rule notation. Making up something hy-
pothetical (and allowing ourselves ∀ and ∃ quantifiers), it might look like:

∀x

(
wish(x)

horse(x)

)
beggar(y)

∃z (horse(z) rides(y, z))

Note that the universal quantifier is necessary in the premise. If we omit-
ted it, then it would be enough to find one wish x that actually is a horse.
Similarly, the existential quantifier in the conclusion is necessary, because
if z were a schematic variable in the rule, then it could be instantiated arbi-
trarily, asserting that any begger could ride any arbitrary horse.

Analyzing this example we see that several key ingredients are neces-
sary to express this are expressing inference rules as propositions, express-
ing persistence as an attribute of a proposition, and expressing quantifiers
as propositions. Will will start in this lecture and complete the task in the
next lecture.

3 Simultaneous Conjunction

Linear inference rules can have multiple premises and multiple conclu-
sions. If we try to think of the horizontal line as some form of binary con-
nective (it will turn out to be A (B1), then we need a way to package up
the premises to become a single proposition and the conclusions to become
a single proposition. This is the purpose of the simultaneous conjunction or
multiplicative conjunction A ⊗ B. It is true if both A and B are true in the

1read as “A linearly implies B” or “A lolli B”

LECTURE NOTES JANUARY 18, 2012

From Rules to Propositions L2.5

same state. So if we have A⊗B we can replace it by A and B:

A⊗B eph

A eph B eph

The other direction seems similarly straightforward: we can get A ⊗ B if
we have both A and B:

A eph B eph

A⊗B eph

But this already creates problems. Say we want to show that

B ⊗A eph

A⊗B eph

is a derived rule of inference. It would have to look something like

A⊗B eph

A eph B eph

B ⊗A eph

One small irritation is that the premises of the last rule are in the wrong
order. More significantly, however, A⊗B eph appears in the proof of both
premises of the last rule. This would seem to constitute a violation of the
very basis of linear inference: ephemeral facts are used only once!

One can try to devise criteria if a compact structure like the one above
is in fact a valid proof for a derived rule of inference, but they are invari-
ably quite complicated and don’t scale well to all of linear logic. A more
promising and general alternative is to change our notation for inference
rather drastically, as we do in the next section.

4 Resources and Goals

We now move to a notation where the main judgment explicitly tracks all
the ephemeral propositions we have used during inference. We write

A1 eph, . . . , An eph︸ ︷︷ ︸
∆

` C eph

and refer to ∆ as the resources and C as the goal we have to achieve. In
order to prove this we have to use all the resources in ∆ exactly once in the

LECTURE NOTES JANUARY 18, 2012

From Rules to Propositions L2.6

proof that we can achieve C. This is an example of a sequent from Gentzen’s
sequent calculus [Gen35], the seminal paper which started proof theory as a
subject of study. Gentzen, however, had structural rules that allowed us to
duplicate or erase assumptions, which are purposely omitted here.

With the sequent notation we can now write

∆ ` A eph ∆′ ` B eph

∆,∆′ ` A⊗B eph
⊗R

In the conclusion we combine the resources ∆ needed to prove A with ∆′

needed to prove B. No resource can be shared between these two sub-
proofs, which would constitute a violation of the ephemeral nature of re-
sources. On the other hand, the order of the resources does not matter, so
allow them to be reordered freely.

This is an example of a right rule that shows how to prove a proposition
(that is, achieve a goal). Conversely, we have to specify how to use a propo-
sition. We do this with a left rule that breaks down one of the current set of
resources. This is straightforward here.

∆, A eph, B eph ` C eph

∆, A⊗B eph ` C eph
⊗L

We cannot invent such left and right rules for the connectives arbitrarily.
In the end, we would like to have a system where the logical propositions
have the expected meaning, both intuitively and formally. We explain some
criteria we may apply in the next section.

5 Identity and Cut

Fundamentally, we need a balance between resources on the left and goals
on the right. This balance is independent of the particular set of connectives
we have—it should hold for arbitrary propositions.

The first, called identity, states that a resource A by itself should always
be sufficient to achieve the goal A.

A eph ` A eph
idA

In this rule we have to be careful not to allow any additional unused re-
sources, because their intepretation is tight: any resource must be used ex-
actly once. We often note the proposition to which the rule is applied in a

LECTURE NOTES JANUARY 18, 2012

From Rules to Propositions L2.7

subscript of the rule name, because this information will be significant in
our study of the sequent calculus.

The second, called cut, states the opposite: achieving a goal A licenses
us to assume A as a resource.

∆ ` A eph ∆′, A eph ` C eph

∆,∆′ ` C eph
cutA

In this rule we have to be careful to combine the assumptions from both
premises, again because all resources in the conclusion must be used ex-
actly once (either in the proof of A or in the proof of C using A).

These two rules are sometimes called judgmental rules, because they are
concerned with the nature of the judgments (here: of being a resource and
a goal) or structural rules, because they do not examine the propositions but
only the structure of the sequent.

In the rest of the lecture we will omit the judgment annotation eph since
for now it is always the same.

6 Identity Expansion

Next we come to the criteria we apply to check that our definitions of con-
nectives via the right- and left-rules are consistent with each other. The first
checks that we can eliminate a use of the identity rule at a compound type
to the uses of the identity rule at smaller types. This means that the left
and right rules match well enough that we can derive the instances of the
identity rule.

A⊗B ` A⊗B
idA⊗B −→E

A ` A
idA

B ` B
idB

A,B ` A⊗B
⊗R

A⊗B ` A⊗B
⊗L

We write−→E for the expansion an identity rule into a proof using identity
rules at smaller propositions. This is called an expansion because the proof
becomes larger, even if the propositions become smaller.

Note how we use the right and left rules for A⊗B, and that they match
up appropriately to derive the identity at A⊗B.

LECTURE NOTES JANUARY 18, 2012

From Rules to Propositions L2.8

7 Cut Reduction

The other judgmental rule is cut. It can also match up the right- and left
rules for the same connective. This time we need to show that we can re-
duce a cut at A⊗B to cuts at A and B.

∆ ` A ∆′ ` B

∆,∆′ ` A⊗B
⊗R

∆′′, A,B ` C

∆′′, A⊗B ` C
⊗L

∆,∆′,∆′′ ` C
cutA⊗B

−→R

∆′ ` B

∆ ` A ∆′′, A,B ` C

∆,∆′′, B ` C
cutA

∆,∆′,∆′′ ` C
cutB

Again, we see that the resources are in balance: we do not gain or lose any
resources when we prove and then use A⊗B.

Cut reduction turns out to be the engine behind some computational
interpretations of linear logic, as we will see in later lectures.

8 Linear Implication

Finally, we return to the original problem of expressing inference rule. The
idea is that a rule exchanging a quarter for two dimes and a nickel

q

d d n

becomes
q (d⊗ d⊗ n

except that the rule itself would be persistent, while the proposition would
not be, unless we make special arrangements.

Reading A (B aloud it means “if we had an A we could obtain a B”. So,
if we have A (B and we can obtain an A, that’s license to use B.

∆ ` A ∆′, B ` C

∆,∆′, A (B ` C
(L

LECTURE NOTES JANUARY 18, 2012

From Rules to Propositions L2.9

Conversely, to show that we can achieve A (B we have to show how to
achieve B under the additional assumption that we have an A.

∆, A ` B

∆ ` A (B
(R

Let’s check if they work together. First, identity expansion:

A (B ` A (B
idA(B −→E

A ` A
idA

B ` B
idB

A (B,A ` B
(L

A (B ` A (B
(R

Next cut reduction:

∆, A ` B

∆ ` A (B
(R

∆′ ` A ∆′′, B ` C

∆′,∆′′, A (B ` C
(L

∆,∆′,∆′′ ` C
cutA(B

−→R

∆′ ` A ∆, A ` B

∆,∆′ ` B
cutA

∆′′, B ` C

∆,∆′,∆′′ ` C
cutB

Fortunately, the rules are once again in harmony.
We will continue with additional connectives and rules in the next lec-

ture.

LECTURE NOTES JANUARY 18, 2012

From Rules to Propositions L2.10

Exercises

Exercise 1 Consider variations of the representation and rules in the span-
ning tree example from Section 1. Consider all four possibilities of nodes
and edges in g and t being ephemeral or persistent. In each case show the
form of the three rules in question: sym (possibly with two variants), start,
and move, indicate if the modification would be correct, and spell out how
to check if a proper spanning tree has been built in the final state.

Exercise 2 We claimed that the rule

q

d d n

becomes
q (d⊗ d⊗ n

Support this claim by proving that the following rules of inference are de-
rived rules of the sequent calculus:

∆, d, d, n ` C

∆, q (d⊗ d⊗ n, q ` C

∆ ` q ∆′, d, d, n ` C

∆,∆′, q (d⊗ d⊗ n ` C

Exercise 3 An alternative left rule for linear implication would be

∆, B ` C

∆, A,A (B ` C
(L′

Explore this rule

(i) Does it satisfy identity expansion?

(ii) Does it satisfy cut reduction?

(iii) If we have a system with the given rule (L can we derive (L′ in it,
and vice versa?

(iv) Discuss the relative merits of the two left rules, depending on the
outcome of the above tests and other criteria you wish to apply.

Exercise 4 The 16-puzzle consists of a 4×4 square filled with 15 tiles, num-
bered 1 through 15, and one empty space. Tiles can slide horizontally or

LECTURE NOTES JANUARY 18, 2012

From Rules to Propositions L2.11

vertically into the empty space. For example, in the position on the left
there are three possible moves, one of which transforms

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

into

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

The goal is to achieve the situation depicted on the right, from some initial
configuration.

We represent this with the following emphemeral predicates.

sq(x, y, n) Square (x, y) has tile n.
empty(x, y) Square (x, y) is empty.

The upper left-hand corner is square (0, 0), the lower right-hand corner is
(s(s(s(0))), s(s(s(0)))), with x increasing left-to-right and y increasing top-
to-bottom. All numbers are represented in unary form, using 0 and s(−).

(i) Represent the legal moves. You may use a representation by log-
ical formulas (in linear logic) or by inference rule with ephemeral
premises and conclusions. Your rules should not depend on the size
of the board.

(ii) Write rules to recognize the winning position for an arbitrary board
with c > 1 columns and r > 1 rows. You should assume persistent
facts

maxcol(c− 1)
maxrow(r − 1)
maxtile(c× r − 1)

where c − 1, r − 1 and c × r − 1 are precomputed in unary notation
using 0 and s(−).

Your rules should have the property that a state ∆ ` winning if and
only if ∆ represents the winning configuration. If it is not winning, it
may get stuck in an arbitrary state.

LECTURE NOTES JANUARY 18, 2012

From Rules to Propositions L2.12

References

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schließen.
Mathematische Zeitschrift, 39:176–210, 405–431, 1935. English trans-
lation in M. E. Szabo, editor, The Collected Papers of Gerhard Gentzen,
pages 68–131, North-Holland, 1969.

LECTURE NOTES JANUARY 18, 2012

	Example: Spanning Trees
	Example: Beggars
	Simultaneous Conjunction
	Resources and Goals
	Identity and Cut
	Identity Expansion
	Cut Reduction
	Linear Implication
	Exercises
	References

