
Lecture Notes on
Dynamic Logic

15-816: Modal Logic
André Platzer

Lecture 19
April 1, 2010

1 Introduction to This Lecture

Dynamic logic is a language for specifying programming languages and
gives a proof calculus for verifying programs.

The original work on dynamic logic is by Pratt [Pra76] and by Harel
[Har79]. More recent references include [HKT00].

2 Propositional Dynamic Logic

Propositional dynamic logic (PD)L is a multi-modal logic with structured
modalities. For each program α, there is a box-modality [α] and a dia-
mond modality 〈α〉. PDL was developed from first-order dynamic logic by
Fischer-Ladner [FL79] and has become popular recently [GW09]. Here we
consider regular PDL.

Definition 1 (PDL) Let Π0 be a set of atomic programs and let P0 be a set of
propositional letters. The set of formulas F of (regular) propositional dynamic
logic and the set of programs Π are defined by simultaneous induction as:

1. true, false ∈ F propositional constants

2. Π0 ⊂ F propositional letters

3. If F,G ∈ F then ¬F, (F ∨G), (F ∧G) ∈ F

4. If F ∈ F , α ∈ Π then [α]F, 〈α〉F ∈ F

LECTURE NOTES APRIL 1, 2010

L19.2 Dynamic Logic

5. Π0 ⊂ Π atomic programs

6. If F ∈ F then ?F ∈ Π.

7. If α, β ∈ Π then (α;β), (α ∪ β), (α∗) ∈ Π

Note that the simultaneous induction is formally necessary because logical
formulas F can occur inside a test program ?F and, vice versa, programs α
can occur inside modalities of logical formulas A→ 〈α〉B.

The effect of state check or test ?F is a skip (i.e., no change) if for-
mula F is true in the current state and that of abort, otherwise. The non-
deterministic choice α ∪ β expresses alternatives in the behavior of the
program. Sequential composition α;β expresses a behavior in which β
starts after α finishes (β never starts if α continues indefinitely). Non-
deterministic repetition α∗, repeats α an arbitrary number of times, pos-
sibly zero. Other control structures can be defined in terms of the regular
operations, for instance:

if H then α else β ≡ (?H;α) ∪ (?¬H;β)

while H do α ≡ (?H;α)∗; ?¬H
repeat α until H ≡ α; (?¬H;α)∗; ?H

Often times, it is convenient to add if-then-else and while-loops directly as
program constructs and investigate proof rules for them.

Atomic programs do not have a specific behavior but can be interpreted
by an arbitrary accessibility relation among states.

Definition 2 (PDL-structure) A PDL structure K = (W,ρ(), τ) is a multi-
modal Kripke structure with an accessibility relation for each atomic program.
That is it consists of

• a non-empty set W of states

• an interpretation ρ() : Π0 → W ×W of atomic programs that assigns a
transition relation ρ(α) to each atomic program α

• an interpretation of propositional letters that assigns to each propositional
letter q the set of states τ(q) ⊆W at which q is true.

Definition 3 (Semantics) The interpretation of PDL relative to a PDL struc-
ture K = (W,ρ(), τ) is defined by extending ρ() to Π and extending τ to F by
the following simultaneously inductive definition:

LECTURE NOTES APRIL 1, 2010

Dynamic Logic L19.3

1. τ(¬F) = W \ τ(F)

2. τ(F ∨G) = τ(F) ∪ τ(G)

3. τ(F ∧G) = τ(F) ∩ τ(G)

4. τ(〈α〉F) = {s ∈W : there is a t ∈W with sρ(α)t and t ∈ τ(F)}

5. τ([α]F) = {s ∈W : for all t ∈W with sρ(α)t we have t ∈ τ(F)}

6. ρ(?F) = {(s, s) : s ∈ τ(F)}

7. ρ(α ∪ β) = ρ(α) ∪ ρ(β)

8. ρ(α;β) = {(s, t) : sρ(α)z and zρ(β)t for a state z}

9. ρ(α∗) = {(s, t) : there is an n ∈ N with n ≥ 0 and there are states
s = s0, . . . , sn = t such that siρ(α)si+1 for all 0 ≤ i < n}

We say that K, s satisfies F and write K, s |= F iff s ∈ τ(F). We say that F is
valid in K and write K |= F iff K, s |= F for all s ∈W . We say that F is valid
and write � F iff K |= F for all PDL-structures K.

3 Proving Propositional Dynamic Logic

A Hilbert-style proof calculus for PDL is shown in Fig. 1.

Theorem 4 The PDL calculus is sound and complete.

See the literature for a proof, e.g., [HKT00]. Further useful derived rules
include:

(D11) [α](F ∧G)↔ [α]F ∧ [α]G

(D12) [α ∪ β]F ↔ [α]F ∧ [β]F

(D13) [?H]F ↔ (H → F)

(D14) [α∗]F ↔ F ∧ [α][α∗]F

LECTURE NOTES APRIL 1, 2010

L19.4 Dynamic Logic

(D1) all propositional tautologies

(D2) 〈α〉(F ∨G)↔ 〈α〉F ∨ 〈α〉G

(D3) 〈α ∪ β〉F ↔ 〈α〉F ∨ 〈β〉F

(D4) 〈α;β〉F ↔ 〈α〉〈β〉F

(D5) 〈?H〉F ↔ H ∧ F

(D6) 〈α∗〉F ↔ F ∨ 〈α〉〈α∗〉F

(D7) [α](F → G)→ ([α]F → [α]G)

(D8) [α∗](F → [α]F)→ (F → [α∗]F)

(D9)
φ φ→ ψ

ψ

(D10)
φ

[α]φ

Figure 1: Hilbert calculus for PDL

4 First-Order Dynamic Logic

First-order dynamic logic (DL) extends PDL (although DL had been devel-
oped first) to a first-order logic and gives concrete atomic programs with
specific effects, as opposed to abstract atomic programs with unknown ef-
fects as in PDL.

Definition 5 (DL) Let V be a set of variables.. The set of formulas F of dynamic
logic and the set of programs Π are defined by simultaneous induction as:

1. true, false ∈ F propositional constants

2. All instances of formulas of first-order logic are in F

3. If F,G ∈ F then ¬F, (F ∨G), (F ∧G) ∈ F

4. If F ∈ F and x ∈ V is a variable then ∀xF, ∃xF ∈ F

5. If F ∈ F , α ∈ Π then [α]F, 〈α〉F ∈ F

6. (x := θ) ∈ Π are atomic programs for variables x ∈ V and terms θ

LECTURE NOTES APRIL 1, 2010

Dynamic Logic L19.5

7. If F ∈ F then ?F ∈ Π.

8. If α, β ∈ Π then (α;β), (α ∪ β), (α∗) ∈ Π

The semantics of DL is extended from that of PDL in the obvious way
where the set of states is chosen to be W := DV , i.e., the set of assign-
ments s : V → D of elements of the domain D (of the first-order structure)
to the variables V . Predicate symbols, function symbols, and terms are in-
terpreted as usual in first-order logic. Because there are no other atomic
programs, we only need to specify the accessibility relation belonging to
an assignment x := θ:

ρ(x := θ) = {(s, t) : t(x) = [[θ]]s, and t(z) = s(z) for all z 6= x}

DL can inherit the axioms of first-order logic and of PDL. One typical
axiom that DL needs in addition is an axiom that relates assignment to
substitution:

(D15) 〈x := θ〉F ↔ F θx

It says that formula F is true after assigning θ to x if and only if F is
true after substituting the new value θ for x.

DL cannot be decidable because it includes first-order logic, where va-
lidity is only semidecidable. But DL does not have a sound and complete
effective calculus. Note here that DL formulas can state the halting problem
for Turing machines. Nevertheless, there are proofs showing that DL has a
relatively complete or arithmetically complete proof calculus [HKT00].

5 Example

Consider the following program that computes the square of x:

s : = 0 ;
i : = 0 ;
while (i<x) {

s := s +2∗ i +1 ;
i := i +1;

}

Let β be the program above. Then we consider the DL formula [β]s = x ∗ x
saying that β always computes the square of x in s.

For proving this DL formula we use a sequent calculus for DL. The se-
quent calculus in Fig. 2 consists of the axioms that we have seen already

LECTURE NOTES APRIL 1, 2010

L19.6 Dynamic Logic

(R1)
Γ ` [α][β]φ,∆

Γ ` [α;β]φ,∆

(R2)
Γ ` 〈α〉〈β〉φ,∆
Γ ` 〈α;β〉φ,∆

(R3)
Γ ` H → ψ,∆

Γ ` [?H]ψ,∆

(R4)
Γ ` H ∧ ψ,∆
Γ ` 〈?H〉ψ,∆

(R5)
Γ ` [α]φ ∧ [β]φ,∆

Γ ` [α ∪ β]φ,∆

(R6)
Γ ` 〈α〉φ ∨ 〈β〉φ,∆

Γ ` 〈α ∪ β〉φ,∆

(R7)
Γ, x̂ = θ ` φx̂x,∆
Γ ` [x := θ]φ,∆

(R8)
Γ, x̂ = θ ` φx̂x,∆
Γ ` 〈x := θ〉φ,∆

(R9)
Γ ` I,∆ I,H ` [α]I I,¬H ` φ

Γ ` [while(H)α]φ,∆

Figure 2: A part of a sequent calculus for DL

oriented into the direction that turns properties of complex programs into
properties of simpler programs. It also includes an assignment axiom that
takes care of renaming variables appropriately. Most importantly, the cal-
culus includes an induction / invariant rule for while-loops as a replace-
ment for the D8 rule of the Hilbert calculus. In the left most branch, rule R9
proves that the induction invariant I is true in the beginning. On the mid-
dle branch, rule R9 proves that the invariant is true again after executing
the loop body α once, if only I was true before executing the loop body and
the loop test H was true (otherwise the loop doesn’t execute). On the right
branch, rule R9 proves that the invariant I together with the knowledge
that the loop test H must have failed for the loop to terminate at all imply
the original postcondition φ.

Using these proof rules, we know prove the property [β]s = x ∗ x using
the following abbreviations and the following choice for the invariant I :

I ≡ i ≤ x ∧ s = i ∗ i
α ≡ s := s+ 2 ∗ i+ 1; i := i+ 1;

For notational convenience, the following proof uses one optimization where
the R7 step for s := 0 keeps using s instead of a new name ŝ, because the
context Γ,∆ is empty and θ does not mention s.

LECTURE NOTES APRIL 1, 2010

Dynamic Logic L19.7

s = 0, i = 0 ` I I, i < x ` [α]I I,¬(i < x) ` s = x ∗ x

s = 0, i = 0 ` [while(i < x)α]s = x ∗ x
s = 0 ` [i := 0][while(i < x)α]s = x ∗ x
s = 0 ` [i := 0;while(i < x)α]s = x ∗ x

` [s := 0][i := 0;while(i < x)α]s = x ∗ x
` [s := 0; i := 0;while(i < x)α]s = x ∗ x

The middle branch can be proved:
` true

i ≤ x, s = i ∗ i, i < x, r = s+ 2 ∗ i+ 1, j = i+ 1 ` i+ 1 ≤ x ∧ s+ 2 ∗ i+ 1 = s+ 2 ∗ i+ 1

i ≤ x, s = i ∗ i, i < x, r = s+ 2 ∗ i+ 1, j = i+ 1 ` i+ 1 ≤ x ∧ s+ 2 ∗ i+ 1 = i ∗ i+ 2 ∗ i+ 1

i ≤ x, s = i ∗ i, i < x, r = s+ 2 ∗ i+ 1, j = i+ 1 ` i+ 1 ≤ x ∧ s+ 2 ∗ i+ 1 = (i+ 1) ∗ (i+ 1)

i ≤ x, s = i ∗ i, i < x, r = s+ 2 ∗ i+ 1, j = i+ 1 ` j ≤ x ∧ r = j ∗ j
i ≤ x, s = i ∗ i, i < x, r = s+ 2 ∗ i+ 1 ` [i := i+ 1](i ≤ x ∧ r = i ∗ i)

i ≤ x, s = i ∗ i, i < x ` [s := s+ 2 ∗ i+ 1][i := i+ 1](i ≤ x ∧ s = i ∗ i)
i ≤ x ∧ s = i ∗ i, i < x ` [s := s+ 2 ∗ i+ 1; i := i+ 1](i ≤ x ∧ s = i ∗ i)

The right branch can be proved:

` true

s = i ∗ i, i = x ` s = i ∗ i
s = i ∗ i, i = x ` s = x ∗ x

i ≤ x, s = i ∗ i,¬(i < x) ` s = x ∗ x
i ≤ x ∧ s = i ∗ i,¬(i < x) ` s = x ∗ x

I ∧ ¬(i < x) ` s = x ∗ x

Now we try to prove the left branch:

s = 0, i = 0 ` 0 ≤ x
s = 0, i = 0 ` 0 ≤ x ∧ 0 = 0 ∗ 0

s = 0, i = 0 ` i ≤ x ∧ s = i ∗ i

Here we find that we cannot prove the property because we do not know
if 0 ≤ x is true in the beginning, which is good news because the property
is not even valid for negative x.

LECTURE NOTES APRIL 1, 2010

L19.8 Dynamic Logic

References

[FL79] Michael J. Fischer and Richard E. Ladner. Propositional dynamic
logic of regular programs. J. Comput. Syst. Sci., 18(2):194–211,
1979.

[GW09] Rajeev Goré and Florian Widmann. An optimal on-the-fly
tableau-based decision procedure for pdl-satisfiability. In Re-
nate A. Schmidt, editor, CADE, volume 5663 of Lecture Notes in
Computer Science, pages 437–452. Springer, 2009.

[Har79] David Harel. First-Order Dynamic Logic. Springer, New York,
1979.

[HKT00] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic logic. MIT
Press, Cambridge, 2000.

[Pra76] Vaughan R. Pratt. Semantical considerations on Floyd-Hoare
logic. In FOCS, pages 109–121, 1976.

LECTURE NOTES APRIL 1, 2010

	Introduction to This Lecture
	Propositional Dynamic Logic
	Proving Propositional Dynamic Logic
	First-Order Dynamic Logic
	Example

