
Lecture Notes on
Model Checking

15-816: Modal Logic
André Platzer

Lecture 18
March 30, 2010

1 Introduction to This Lecture

In this course, we have seen several modal logics and proof calculi to jus-
tify the truth / validity of formulas. But natural deduction, Hilbert-style
calculi, tableaux, sequent calculi and the like are not the only way to estab-
lish truth.

For a particular Kripke structure at hand, a systematic exploration of
the state space can be used to establish if a formula of modal logic is true or
false in this Kripke structure. This process is called model checking [CGP99]
and has been pioneered by Clarke and Emerson [CE81] and by Queille and
Sifakis [QS82].

2 Model Checking K2

Consider the finite automaton in Figure 1 over the alphabet {0, 1}with ini-
tial state p and accepting state F . Consider its corresponding transition
structure as a Kripke structure, where the assignment of propositional let-
ter at states is as indicated. That is, at the left-most state only propositional
letter p holds, at the right-most, only s holds and so on. With this, the states
of the finite automaton are captured in the Kripke structure.

The finite automaton has labels on the edges also, which cannot (really)
be captured in the states. Instead, we consider a labelled transition struc-
ture where the input 0,1 is represented as labels on the accessibility rela-
tion. Now we have two accessibility relations ρ0 and ρ1 for the accessibility

LECTURE NOTES MARCH 30, 2010

L18.2 Model Checking

p

start

q F s

0

1

1 0
1 0,1

1

0,1

Figure 1: A finite automaton / acceptor

under input 0 and under input 1, respectively. To access these two sepa-
rate accessibility relations in logical formulas, we use two separate pairs
of modalities, which are also labelled with input 0 or input 1, respectively:
the modality pair �0 and ♦0 referring to the accessibility relation ρ0, and
the modality pair �1 and ♦1 for the accessibility relation ρ1.

Let K be the Kripke structure corresponding to Figure 1, then

K |= ¬♦0F does not end with 0
K |= p→ ♦0p p has a 1-loop
K |= ♦0true never stuck with input 0
K |= ♦1true never stuck with input 1
K |= F → �0(¬♦0F ∧ ¬♦1F) no end one step after seeing 0 from F

The last formula is a bit cumbersome to write. So we introduce a third pair
of modal operators �01 and ♦01 that we bind to refer to transition under
any input (0 or 1) by assuming the following axiom (for all instantiations
of formula φ):

♦01φ ↔ ♦0φ ∨ ♦1φ

With this we find that:

K |= F → �0¬♦01F no end one step after seeing 0 from F

K |= F → �0¬♦01♦01F no end two steps after seeing 0 from F

K |= p→ ♦01q p has a q successor
K |= F → �1F stay final on 1s

How do we establish these properties systematically? How do we model
check for a given Kripke structureK and a given modal formula φ ifK |= φ?
The simple-most approach is to visit each state s ∈ W and semantically

LECTURE NOTES MARCH 30, 2010

Model Checking L18.3

evaluate if K, s |= φ. If the Kripke structure K is finite, this process ter-
minates. It is easy to see that model checking of K for finite-state Kripke
structures is decidable this way.

This simple process is not necessarily particularly fast, though, because
the same questions may have to be answered repeatedly for some states in
deeply nested modal formulas, e.g., for

K |= �0♦1�1(p ∨ s)

An alternative is to build truth-flags for all states with a computation fol-
lowing bottom-up dynamic programming; see Figure 2. That is, starting

p

start

q F s

p ∨ s
�1(p ∨ s)
♦1�1(p ∨ s)
�0♦1�1(p ∨ s)

0

♦1�1(p ∨ s)
�0♦1�1(p ∨ s)

1

1

�0♦1�1(p ∨ s)

0

p ∨ s
�1(p ∨ s)
♦1�1(p ∨ s)
�0♦1�1(p ∨ s)

1 0,1

1

0,1

Figure 2: A finite automaton / acceptor

with the smallest subformulas ψ of the original formula φ, all states s are
marked whether they satisfy ψ. Then the truth-marking for ψ is used when
computing the truth of the larger subformulas of φ. This process solves the
global model checking problem, i.e., it computes the set τ of all states of the
Kripke structure where φ is true.

Definition 1 (Model checking problem) LetK = (W,ρ, v) be a (usually finite-
state) Kripke structure, let s ∈ W be a state of K and let φ be a (propositional)
modal formula. GivenK, s and φ, the problem to decide ifK, s |= φ is called local
model checking problem. Given K and φ, the problem of computing the set of
states s ∈W where K, s |= φ, i.e.,

τ(φ) := {s ∈W : K, s |= φ}

is called global model checking problem.

LECTURE NOTES MARCH 30, 2010

L18.4 Model Checking

The local model checking problem can be solved from a solution of the
global model checking problem by checking if s ∈ τ(φ).

With this the above global model checking process can be characterized
by the following algorithm that directly follows the semantics of K:

τ(q) := {s ∈W : K, s |= φ} for a propositional letter q
τ(¬φ) :=W \ τ(φ)

τ(φ ∨ ψ) := τ(φ) ∪ τ(ψ)
τ(�φ) := {s ∈W : all t with sρt satisfy t ∈ τ(φ)}
τ(♦φ) := {s ∈W : some t with sρt satisfies t ∈ τ(φ)}

Similar model checking procedures can be defined for other simple modal
logics.

3 Propositional Linear Temporal Logic LTL

One canonical example for (linear time) temporal logics used prominently
in model checking is the linear time temporal logic LTL [Pnu77, CGP99].
For building logical formulas LTL allows propositional letters and propo-
sitional logical operators. In addition, LTL allows modal operators:

φ, ψ ::= p | ¬φ | φ ∨ ψ | φUψ

Defined LTL operators give more conventional modalities

�φ ≡ trueUφ
♦φ ≡ ¬(trueU¬φ)

The semantics of LTL is defined for Kripke structures with Kripke frames
that are strict partial orders. Often, additional assumptions are made.

Definition 2 (Interpretation of LTL) Given a Kripke structure K = (W,<, v)
that is a strict partial order, the interpretation |= of LTL formulas in a world s is
defined as

1. K, s |= φUψ iff there is a t with s < t and K, t |= ψ and K, r |= φ for all r
with s < r < t.

LECTURE NOTES MARCH 30, 2010

Model Checking L18.5

4 Computation Tree Logic CTL

One canonical example for (branching time) temporal logics used promi-
nently in model checking is the computation tree logic CTL [CGP99]. For
building logical formulas CTL allows propositional letters and proposi-
tional logical operators. In addition, CTL allows modal operators:

φ, ψ ::= p | ¬φ | φ ∨ ψ | AXφ | EXφ | A(φUψ) | E(φUψ)

Definition 3 (Computation structure) A Kripke structure K = (W,ρ, v) is a
computation structure if ρ is a partial order on W in which every state s ∈ W
has at least one direct successor t, i.e., sρt and there is no z with sρz and zρt. A
path in K is an infinite sequence s0, s1, . . . , sn, . . . of states sn ∈ W such that
si+1 is a direct successor of si.

A computation tree is a computation structure that is also a tree.

Definition 4 (Interpretation of CTL) Given a computation structureK = (W,ρ, v),
the interpretation |= of CTL formulas in a world s is defined as

1. K, s |= A iff v(s)(A) = true .

2. K, s |= φ ∧ ψ iff K, s |= φ and K, s |= ψ.

3. K, s |= φ ∨ ψ iff K, s |= φ or K, s |= ψ.

4. K, s |= ¬φ iff it is not the case that K, s |= φ.

5. K, s |= AXφ iff K, t |= φ for each direct successor t of s.

6. K, s |= EXφ iff K, t |= φ for some direct successor t of s.

7. K, s |= A(φUψ) iff for each path s0, s1, . . . , sn, . . . with s0 = s there is an
i ≥ 0 such that K, si |= ψ and K, sj |= φ for all j with 0 ≤ j < i.

8. K, s |= E(φUψ) iff for some path s0, s1, . . . , sn, . . . with s0 = s there is an
i ≥ 0 such that K, si |= ψ and K, sj |= φ for all j with 0 ≤ j < i.

When K is clear from the context, we also often abbreviate K, s |= φ by K |= φ.

LECTURE NOTES MARCH 30, 2010

L18.6 Model Checking

Beware: there are many slightly different notions of CTL. Watch out for the
precise semantics. Also there are common defined CTL operators:

AFφ ≡ A(trueUφ)
EFφ ≡ E(trueUφ)
AGφ ≡ ¬E(trueU¬φ)
EGφ ≡ ¬A(trueU¬φ)

Now we can characterize a global model checking process for CTL and
finite-state computation structures by a dynamic programming computa-
tion with the least fixedpoint operator µ:

τ(q) := {s ∈W : K, s |= φ} for a propositional letter q
τ(¬φ) :=W \ τ(φ)

τ(φ ∨ ψ) := τ(φ) ∪ τ(ψ)
τ(AXφ) := {s ∈W : all direct successors t of s satisfy t ∈ τ(φ)}
τ(EXφ) := {s ∈W : some direct successor t of s satisfies t ∈ τ(φ)}

τ(A(φUψ)) := µZ.
(
τ(ψ) ∪ (τ(φ) ∩ τ(AXZ))

)
τ(E(φUψ)) := µZ.

(
τ(ψ) ∪ (τ(φ) ∩ τ(EXZ))

)

Because the respective transformation functions t : 2W → 2W are monotone
functions on finite sets, their least fixedpoints µZ.t(Z) can be computed by
iterating from the least element (empty set):

µZ.t(Z) =
⋃
n∈N

tn(∅)

We model check that K, 1 |= T1 → A(trueUC1) holds for the structure
K depicted in Fig. 3. Starting from the simple subformulas we put truth-
marks for all subformulas of ¬T1 ∨A(trueUC1 on all states.

τ(T1) = {1, 4, 5, 8}
τ(C1) = {3, 7}
τ(¬T1) = Z8 \ τ(T1) = {0, 2, 3, 6, 7}

τ(A(trueUC1)) = µZ.τ(C1) ∪ (τ(true) ∩ τ(AXZ)
= µZ.τ(C1) ∪ τ(AXZ) =: µZ.t(Z)

LECTURE NOTES MARCH 30, 2010

Model Checking L18.7

0

1 2

3 4 5 6

7 8

N1N2

T1N2 N1T2

C1N2 T1T2 T1T2 N1C2

C1T2 T1C2

Figure 3: Mutex problem with two processes i = 1, 2 with states Ni=non-
critical, Ti=trying, Ci=critical

We iterate to find the last fixedpoint. Let t(Z) := τ(C1) ∪ τ(AXZ).

t0(∅) = ∅
t1(∅) = τ(C1) ∪ τ(AX∅) = {3, 7}
t2(∅) = τ(C1) ∪ τ(AX{3, 7}) = {3, 4, 7}
t3(∅) = τ(C1) ∪ τ(AX{3, 4, 7}) = {1, 3, 4, 7}
t4(∅) = τ(C1) ∪ τ(AX{1, 3, 4, 7}) = {1, 3, 4, 7, 8}
t5(∅) = τ(C1) ∪ τ(AX{1, 3, 4, 7, 8}) = {1, 3, 4, 5, 7, 8}
t5(∅) = τ(C1) ∪ τ(AX{1, 3, 4, 5, 7, 8}) = {1, 3, 4, 5, 7, 8}

Consequently we have found

τ(¬T1 ∨A(trueUC1) = τ(¬T1) ∪ τ(A(trueUC1)

= {0, 2, 3, 6, 7} ∪ {1, 3, 4, 5, 7, 8} = all states

In particular, 1 is contained in the result, hence we conclude that indeed
K, 1 |= T1 → A(trueUC1).

But why does this process compute the right answer?

Lemma 5 For any computation structure, the recursive definition of τ(φ) coin-
cides with the set σ(φ) of all states at which φ holds true, which is defined as

σ(φ) := {s ∈W : K, s |= φ}

LECTURE NOTES MARCH 30, 2010

L18.8 Model Checking

Proof: We just consider the case E(φUψ)). By induction hypothesis, we
assume that σ(H) = τ(H) for all formulasH that are simpler thanE(φUψ)).
Because of the following CTL equivalence

E(φUψ) ≡ ψ ∨ (φ ∧ EXE(φUψ))

it is easy to see that the set Z = τ(E(φUψ)) is a fixedpoint satisfying

Z = τ(ψ) ∪ (τ(φ) ∩ τ(EXZ)) (1)

We only have to show that it is the least fixedpoint of (1). Consider another
fixedpoint Z ′ of equation (1). By induction hypothesis, (1) is equivalent to
the following because the formulas are simpler:

Z = σ(ψ) ∪ (σ(φ) ∩ σ(EXZ))

Let s ∈ Z = τ(E(φUψ)). Since σ(E(φUψ)) is a fixedpoint of (1) and τ(E(φUψ))
is the smallest fixedpoint, we have s ∈ σ(E(φUψ)). That is K, s |= E(φUψ).
Hence there is a path s0, s1, . . . , si, . . . with s0 = s and there is an n ≥ 0
such that sn ∈ τ(ψ) and sj ∈ τ(φ) for all j with 0 ≤ j < i. We show by
induction on n that s ∈ Z ′.

0. n = 0: Because Z ′ is a fixedpoint of (1), we have

Z ′ = τ(ψ) ∪ (τ(φ) ∩ τ(EXZ ′)) ⊇ τ(ψ) 3 s

• Assume that the property holds for n − 1 and we show that it holds
for n. By induction hypothesis we have that s1 ∈ Z ′. Now because
s0 ∈ τ(φ) and s0ρs1 we know that s0 ∈ τ(φ) ∩ τ(EXZ ′) ⊆ Z ′. Hence
s = s0 ∈ Z ′.

The case A(φUψ)) is even more interesting. It is again very easy to see
that the set Z = τ(E(φUψ)) is a fixedpoint of

Z = τ(ψ) ∪ (τ(φ) ∩ τ(AXZ)) (2)

We only have to show that it is the smallest fixedpoint. Consider another
fixedpoint Z ′ of equation (2). Let s ∈ Z = τ(A(φUψ)). As above, this im-
plies K, s |= A(φUψ), because σ(A(φUψ)) is a fixedpoint of (2) and Z is the
smallest. Hence for all paths πi = si0, s

i
1, . . . , s

i
j , . . . with si0 = s there is an

ni ≥ 0 such that si
ni ∈ τ(ψ) and sij ∈ τ(φ) for all j with 0 ≤ j < ni. That

looks like a lot of paths. Are there finitely many or infinitely many paths?

LECTURE NOTES MARCH 30, 2010

Model Checking L18.9

The clue is that there are only finitely many path prefixes to consider!
For each path πi only the finite prefix until ni is relevant. If there were in-
finitely many such finite prefixes then there must be infinitely many nodes
in the computation structure. By König’s lemma, each infinite finite-branching
tree has an infinite path. Since there are only finitely many path prefixes
(say p prefixes), let n be the maximum length: n = maxpi=1 ni. Now we can
prove s ∈ Z ′ by induction on n.

0. n = 0: Because Z ′ is a fixedpoint of (2), we have

Z ′ = τ(ψ) ∪ (τ(φ) ∩ τ(AXZ ′)) ⊇ τ(ψ) 3 s

• Assume that the property holds for n − 1 and we show that it holds
for n. By induction hypothesis we have that si1 ∈ Z ′ for all p path
prefixes πi (i = 1, . . . , p). Now because s0 ∈ τ(φ) and s11, . . . , s

p
1 are

all direct successors of s0 we know that s0 ∈ τ(φ) ∩ τ(AXZ ′) ⊆ Z ′.
Hence s = s0 ∈ Z ′.

See [CGP99, Sch03] for AGφ properties and other cases of the proof. �

Lemma 6 (CTL model checking is linear) CTL model checking for a CTL for-
mula φ of length |φ| and a computation structureK = (W,ρ, v) needs (|W |+ |ρ|)|φ|
steps to check if K |= φ.

Proof: see [CGP99].

LECTURE NOTES MARCH 30, 2010

L18.10 Model Checking

References

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and synthe-
sis of synchronization skeletons using branching-time temporal
logic. In Logic of Programs, pages 52–71, 1981.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
Checking. MIT Press, Cambridge, MA, USA, 1999.

[Pnu77] Amir Pnueli. The temporal logic of programs. In FOCS, pages
46–57, 1977.

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and verifi-
cation of concurrent systems in CESAR. In Mariangiola Dezani-
Ciancaglini and Ugo Montanari, editors, Symposium on Program-
ming, volume 137 of LNCS, pages 337–351. Springer, 1982.

[Sch03] Peter H. Schmitt. Nichtklassische Logiken. Vorlesungsskriptum
Fakultät für Informatik , Universität Karlsruhe, 2003.

LECTURE NOTES MARCH 30, 2010

	Introduction to This Lecture
	Model Checking K2
	Propositional Linear Temporal Logic LTL
	Computation Tree Logic CTL

