
Lecture Notes on
Computational Interpretations of Modalities

15-816: Modal Logic
Frank Pfenning

Lecture 4
January 21, 2010

1 Introduction

In this lecture we present the first two of many possible computational
interpretations of intuitionistic modal logic. The first interprets the type
�A as source code of type A and relates proof reduction to staged compu-
tation [DP01]. For the second we analyze possibility, ♦A, and relate it to
computational effects [PD01].

2 Staged Computation

Consider for the moment the function exp : nat → nat → nat where exp n b =
bn. We give two different definitions on unary natural numbers.

exp (0) = λb. 1
exp (s(n)) = λb. b ∗ expn b

exp′ (0) = λb. 1
exp′ (s(n)) = let f = exp′ n in λb. b ∗ f b

These are both correct implementations, but their operational behavior is
very different. The first one, when given the argument 2, performs just one
step of computation and returns a function. In an operational semantics
based on closures, it would return a closure; here we just carry out the
substitutions. We write M −→ M ′ for computational reduction which is
based on local reduction but extended by certain congruences, and M =⇒R

M ′ for reductions which can be carried out on any subterm.

LECTURE NOTES JANUARY 21, 2010



L4.2 Computational Interpretations of Modalities

exp (s(s(0))) −→∗ λb2. b2 ∗ exp (s(0)) b2

The second one actually recurses all the way to 0, returning a function
that does not depend on the first argument any more.

exp′ (s(s(0))) −→∗ λb2. b2 ∗ (λb1. b1 ∗ (λb0. 1) b1) b2

=⇒∗
R λb2. b2 ∗ (b2 ∗ 1)

We can see that the second version does a lot more computation than
the first. However, if the resulting function is applied many times, to many
different bases, then the second can be more efficient, especially if the indi-
cated optimization had been applied.

The difference between the two programs is not the ultimately com-
puted answer, but the way the computation is staged. In the second version,
all computation depending on the first argument is carried out, while in the
first version this is not the case.

We would like to capture the difference between these two functions in
the type system. The goal is to devise a type system so that we can prescribe
a type under which the first program fails to type-check because it does
not carry out all computation induced by its first argument, but which al-
lows (essentially) the second version. The computational interpretation of
necessity presented in the next section, achieves exactly that!

3 Operational Semantics

In order to show how necessity is related to staged computation, we will
be a bit more formal about the operational interpretation of proof terms.
A simple definition is a so-called small-step semantics which applies local
reductions according to a fixed evaluation discipline. We also need the
notion of a value. For concreteness, we work with a call-by-value functional
language although, as mentioned before, the logical underpinnings do not
force this.

In the formal treatment we only consider A∧B, A⊃B, and >. This can
be extended to A ∨ B and ⊥ (see Exercise 1). First, the definition of value,
using a judgment M value.

M value N value
〈M,N〉 value

∧V
〈 〉 value

>V
λx:A.M value

⊃V

LECTURE NOTES JANUARY 21, 2010



Computational Interpretations of Modalities L4.3

The notion of a value is related to the notion of a verification, as can be
seen from the cases for conjunction and truth. However, we do not look in-
side functions — they are treated entirely extensionally. We cannot analyze
their structure, we can only apply them to arguments and observe their be-
havior. Unlike verifications, this means that functional values of type A⊃B
may refer to types much bigger than A or B. It is therefore a considerable
challenge to use an opaque notion of function as the foundation for logic or
type theory.

The following reduction and congruence rules allow us to evaluate a
closed term to a value by repeated reduction, according to a call-by-value
discipline. In the rule names, we use C to indicate a constructor for a type
and D a destructor.

M value
(λx:A.N) M −→ [M/x]N

⊃DC

M value N value
π1 〈M,N〉 −→ M

∧DC1
M value N value
π2 〈M,N〉 −→ N

∧DC2

M −→ M ′

〈M,N〉 −→ 〈M ′, N〉
∧C1

M value N −→ N ′

〈M,N〉 −→ 〈M,N ′〉
∧C2

M −→ M ′

π1 M −→ π1 M ′
∧D1

M −→ M ′

π2 M −→ π2 M ′
∧D2

no ⊃C rule for λx.M

M −→ M ′

M N −→ M ′ N
⊃D1

M value N −→ N ′

M N −→ M N ′
⊃D2

Now we have preservation and progress property. The are formulated
only on closed terms because, unlike the process of proof reduction, we
only evaluate expressions that are closed.

Theorem 1 (Type Preservation) If • ` M : A and M −→ M ′ then • ` M ′ :
A.

Proof: By induction on the derivation of M −→ M ′, using subject reduc-
tion for the case of a redex. �

Theorem 2 (Progress) If • ` M : A then either

(i) M value, or

LECTURE NOTES JANUARY 21, 2010



L4.4 Computational Interpretations of Modalities

(ii) M −→ M ′ for some M ′.

Proof: By induction on the structure of M , applying inversion in each case
to obtain types for the subterms. �

We also have a termination property for the purely logical language,
without recursion. We will not prove this property here.

Theorem 3 (Termination) If • ` M : A then there exists a term V such that
V value and M −→∗ V .

4 Source Expressions

Now we extend the computational interpretation sketched above to encom-
pass the necessity modality �A. The interpretation will go as follows:

x:A true x stands for a value of type A
u::A valid u stands for a source expression of type A
[[M/u]]N substitute the source expression M for u in N
box M M is a quoted source expression
let box u = M in N evaluate M to a quoted source expression box M ′

and then evaluate [[M ′/u]]N .

We have one new kind of value: a quoted source expression.

box M value
�V

We also have one new reduction and one congruence rule.

M −→ M ′

let box u = M in N −→ let box u = M ′ in N
�D

let box u = box M in N −→ [[M/u]]N
�DC

The crucial restriction of the typing rules ensures that in an expression
box M , the term M does not reference any free variables x that stand for
values. It can, however, mention variables u that stand for source expres-
sions. So when we substitute [[N/u]]box M then we are building a larger
source expression from two smaller ones, N and M . Conversely, when

LECTURE NOTES JANUARY 21, 2010



Computational Interpretations of Modalities L4.5

we substitute a value [V/x]box M = box M the source expression is not
affected.

We observe how this plays out in the two versions of the exponential
function from Section 2. We now try to enforce proper staging, specifying

exp : nat → �(nat → nat)

where we have identified implication (⊃) with the function type construc-
tion (→). The specification means that the exponential function takes a nat-
ural number n as first argument and produces a source expression which
computes λb:nat. bn. The � indicates that this expression can not refer di-
rectly to the first argument. Rewriting the first example, we obtain the
following implementation

exp (0) = box λb. 1
exp (s(n)) = box λb. b ∗ expn b

6` exp : nat → �(nat → nat)

which is not well-typed because underneath the box in the second line we
have a reference to n (which is a value variable, and not an expression vari-
able) which should not be visible. One can also debate if exp itself should
be visible or not, but the expression is ill-typed in either case.

The second version, however, can easily be rewritten to have the speci-
fied type

exp′ (0) = λb. 1
exp′ (s(n)) = let box f = exp′ n in λb. b ∗ f b

` exp′ : nat → �(nat → nat)

We can now revisit the characteristic axioms and read off their compu-
tational interpretation.

eval = λx:�A. let box u = x in u
: �A⊃A

eval M evaluates M , which must denote a quoted source expression box M ′.
It then proceeds to evaluate M ′. In a system for runtime code generation, it
would first compile M ′ and then jump to the generated code [WLPD98]. In
reality, languages with runtime code generation rarely keep around source
expressions. Instead, the type box M : �A is compiled to a code generator
which, when called, will produce compiled code for M .

LECTURE NOTES JANUARY 21, 2010



L4.6 Computational Interpretations of Modalities

quote = λx:�A. let box u = x in box box u
: �A⊃��A

quote M evaluates M , which must denote a quoted source expression box M ′.
It returns that result itself as a quoted source expression (box (box M ′)).

apply = λx:�(A⊃B). λy:�A. let box u = x in let box w = y in box u w
: �(A⊃B)⊃�A⊃�B

apply M N evaluates M and N which must denoted quoted expressions
box M ′ and box N ′. It then builds and returns a new source expression
box (M ′ N ′).

There are a number of common examples that are used to illustrate run-
time code generation. Here are the types of some and their meaning in
terms of staged computation.

match : regexp → �(string → bool). This specifies a function which, given
a regular expression, returns code that will match strings against that par-
ticular expression. For example, the match function might construct code
implementing a finite automaton from the given regular expression.

parse : grammar → �(string → ast). This specifies a program which, given
a grammar, returns code that will parse strings into abstract syntax trees.
This is usually called a parser generator.

interpret : program → �(input → output). This specifies a function which,
given a program, returns code that will run the given program on inputs
to produce outputs. Such a function is usually called a compiler. In the spe-
cial case of a self-interpreter, that is, an interpreter for a language written
in itself, we can have an input of type �A, but it is difficult to write the
interpreter without further language constructs because there is no way to
analyze expressions of type �A within the present language.

mmult : matrix → �(matrix → matrix). This specifies a function which,
given a matrix, returns code that will multiple the first matrix with a sec-
ond. This is interesting because with optimizations during the code gen-
eration phase, we can achieve the efficiency of specialized algorithms for

LECTURE NOTES JANUARY 21, 2010



Computational Interpretations of Modalities L4.7

sparse matrix multiplication using the ordinary program using three nested
loops [LL96].

In all these case, by staying within the language itself, we can avoid
having to generate textual representations of the program which is not only
error-prone, but inefficient since the text has to be parsed, type-checked,
compiled, and then executed. The type system presented above influenced
the type system for MetaOCaml1, although the syntax is based on a differ-
ent presentation of modal logic to which we will return later in the course.

5 Possibility

Most modal logics support at least one other modality besides necessity,
namely possibility, written ♦A. In classical modal logics, we can say that A
is possible if its negation is not necessary, that is, ♦A = ¬�¬A. In intuition-
istic modal logics this is not the case, because we want explicit evidence for
the possibility of A, rather than just checking that its negation is impossible.

From the perspectives of the multiple-worlds interpretation of modal
logics, any proposition A is possible. For example, if we assume the A
is true, then A is clearly possible because it is in fact true in any world
satisfying the hypotheses. In order to capture the intuition that anything is
possible, we just need to be careful to track the assumptions under which
we reason, and we need a new judgment A poss. If A is true then it is clearly
possible.

∆; Γ ` A true

∆; Γ ` A poss
poss

This rule is part of the judgmental definition of possibility, so it is a
judgmental rule rather than an introduction or elimination rule. No propo-
sitional connective is involved.

The substitution principle for possibility is somewhat complex. Assume
we have a proof that A poss. This does not imply A’s truth, so we cannot
substitute this proof for an assumption A true. However, we know that A
must be true in some world. So let’s place ourselves in that world, assuming
A is true but nothing else. Now if we conclude that C is possible from this
assumption, we know that C must indeed be possible.

Substitution Principle for Possibility, v.1: If Γ ` A poss and
x:A true ` C poss then Γ ` C poss.

1http://www.metaocaml.org

LECTURE NOTES JANUARY 21, 2010

http://www.metaocaml.org


L4.8 Computational Interpretations of Modalities

It would be incorrect to allow the conclusion C true because we only
know that A is possible, not that A is true (see Exercise 2). Since we are
adding possibility to a system which already has necessity, we have to con-
sider the interaction with assumptions about validity. Hypotheses A valid
are assumed to be true in all worlds, including the one were A is true. These
assumptions therefore carry over and we obtain:

Substitution Principle for Possibility, v.2: If ∆; Γ ` A poss and
∆; x:A true ` C poss then ∆; Γ ` C poss.

If the first deduction is D and the second E , we write 〈〈D/x〉〉E for the
deduction resulting from the application of the substitution principle.

Internalizing possibility as a propositional operator is straightforward,
once its judgmental basis has been understood.

∆; Γ ` A poss

∆; Γ ` ♦A true
♦I

∆; Γ ` ♦A true ∆; x:A true ` C poss

∆; Γ ` C poss
♦E

These rules are locally sound and complete.

D
∆; Γ ` A poss

∆; Γ ` ♦A true
♦I E

∆; x:A true ` C poss

∆; Γ ` C poss
♦E =⇒R

〈〈D/x〉〉E
∆; Γ ` C poss

D
∆; Γ ` ♦A true =⇒E

D
∆; Γ ` ♦A true

∆; x:A true ` A true
x

∆; x:A true ` A poss
poss

∆; Γ ` A poss
♦E

∆; Γ ` ♦A true
♦I

We can now write out some of the characteristic axioms. We abbreviate
assumptions x:A true as x:A, and similarly for u::A valid.

LECTURE NOTES JANUARY 21, 2010



Computational Interpretations of Modalities L4.9

A⊃♦A. Truth is stronger than possibility. The opposite implication does
not hold in general, otherwise truth and possibility would collapse.

·;x:A ` A true
x

·;x:A ` A poss
poss

·;x:A ` ♦A true
♦I

·; · ` A⊃♦A true
⊃I

♦♦A⊃♦A. If we iterate possibility, we obtain an equivalent proposition.
In other words, ♦ is idempotent as a modal operator, just as �.

·;x:♦♦A ` ♦♦A true
x

·; y:♦A ` ♦A true
y

·; z:A ` A true
z

·; z:A ` A poss
poss

·; y:♦A ` A poss
♦E

·;x:♦♦A ` A poss
♦E

·;x:♦♦A ` ♦A true
♦I

·; · ` ♦♦A⊃♦A true
⊃I

�(A⊃B)⊃♦A⊃♦B. Finally we have to consider the interaction of ne-
cessity and possibility. We cannot prove (A⊃B)⊃♦A⊃♦B because A⊃B
may not hold in world at which A is true (and where we hope B would be
true). So the implication must be true in all worlds, that is, valid.

·; x:�(A⊃B),− ` �(A⊃B) true
x

−; y:♦A ` ♦A true
y

u::A⊃B;− ` A⊃B true
u

−; z:A ` A true
z

u::A⊃B; z:A ` B true
⊃E

u::A⊃B; z:A ` B poss
poss

u::A⊃B; y:♦A ` B poss
♦E

u::A⊃B; y:♦A ` ♦B true
♦I

·; x:�(A⊃B), y:♦A ` ♦B true
�E

·; · ` �(A⊃B)⊃♦A⊃♦B true
⊃I × 2

LECTURE NOTES JANUARY 21, 2010



L4.10 Computational Interpretations of Modalities

6 Verifications and Uses

It is easy to generate verifications and uses. We write A·↑· if there is a veri-
fication of A poss.

∆; Γ ` A ↑
∆; Γ ` A ·↑·

poss

∆; Γ ` A ·↑·
∆; Γ ` ♦A ↑

♦I

∆; Γ ` ♦A ↓ ∆; x:A true ` C ·↑·
∆; Γ ` C ·↑·

♦E

7 Proof Terms

In order to discuss the computational interpretation, we assign proof terms
to possibility. We see that we have a new judgment A poss in the conclusion,
but not as a hypothesis. For validity, we had a new form of variable, so
now we have a new kind of term which is evidence for A poss. We write
E ÷ A poss, abbreviated as E ÷ A, to indicate that E is a proof term of the
possibility of A. We call these proof expressions and use letters E and F for
proof expressions. First, the judgmental rule to establish possibility from
truth.

∆; Γ ` M : A true

∆; Γ ` M ÷A poss
poss

This means any proof term M is also a proof expression. We do not write
any explicit proof constructor because this rule does not change a proposi-
tion, only the judgments.

The introduction and elimination rules:

∆; Γ ` E ÷A poss

∆; Γ ` dia E : ♦A true
♦I

∆; Γ ` M : ♦A true ∆; x:A true ` E ÷ C poss

∆; Γ ` let dia x = M in E ÷ C poss
♦E

We see that the new let dia x = M in E construct is itself a proof expres-
sion. Now reconsider the new substitution principle, with proof expres-
sions:

LECTURE NOTES JANUARY 21, 2010



Computational Interpretations of Modalities L4.11

Substitution Principle for Possibility, v.3: If ∆; Γ ` E ÷ A poss
and ∆; x:A true ` F ÷ C poss then ∆; Γ ` 〈〈E/x〉〉F ÷ C poss.

We need to define the substitution operation 〈〈E/x〉〉F on proof expres-
sions. Here we encounter a surprise. Consider the case where F is infered
by the possibility rule, so F is actually a term N :

∆; x:A true ` N : C true

∆; x:A true ` N ÷ C poss
poss

In this case we cannot substitute 〈〈E/x〉〉N by traversing N , because N es-
tablishes truth, rather than possibility and we have already discussed that
such a substitution principle is not correct. Solution: we analyze the struc-
ture of E instead of F when defining 〈〈E/x〉〉F ! Eventually, E will be in-
ferred by the possibility rule, since that is the only way to establish possibil-
ity, eventually, and at that point we can revert to an ordinary substitution!

〈〈let dia x = M in E/x〉〉F = let dia x = M in 〈〈E/x〉〉F
〈〈M/x〉〉F = [M/x]eF

[M/x]e(let dia y = N in F ) = let dia y = [M/x]N in F
[M/x]e(N) = [M/x]N

Here we write [M/x]eF for an ordinary substitution of a term for a vari-
able in an expression. We may omit the superscript because of the last
equation. Note that we do not substitute into the body of a let dia con-
struct, because x cannot occur there.

Why does this terminate? The substitution 〈〈E/x〉〉F terminates, be-
cause we can first prove that [M/x]N and [M/x]eF terminate, by induction
on N and F , and then apply an induction on the structure of E to show
that 〈〈E/x〉〉F terminates.

The substitution [[M/u]]N is extended compositionally to expressions
[[M/u]]eF and has to descend into all subterms and subexpressions since
valid variables u may occur anywhere.

Finally, we can express the local reductions and expansions for possibil-
ity. For the reduction, we see that we actually reduce one proof expression
to another, rather than a proof term.

let dia x = dia E in F =⇒R 〈〈E/x〉〉F
M : ♦A =⇒E dia (let dia x = M in x)

LECTURE NOTES JANUARY 21, 2010



L4.12 Computational Interpretations of Modalities

8 Generalized Elimination Rules

When writing the elimination rule for disjunction, falsehood, and later ne-
cessity, we wrote, for example,

Γ ` A ∨B true Γ, x:A true ` C true Γ, y:B true ` C true

Γ ` C true
∨E

The justification for limiting the conclusion to C true is that we were con-
sidering only one judgment at that time. Even in the version with verifica-
tions and uses, we are globally interested only in establishing a verification
of C↑. Even when we introduced validity, we only used it as a hypothesis
so we did not need to generalize the elimination rules.

Now, however, we also have the judgment of possibility so we also need

∆; Γ ` A ∨B true ∆; Γ, x:A true ` C poss ∆; Γ, y:B true ` C poss

∆; Γ ` C poss
∨E

and similarly for ⊥E and �E.
In the proof term calculus, this means that we have proof expressions

let box u = M in E, in addition to the proof terms let box u = M in N (and
analogously for case and abort).

In future systems of natural deduction we will have occasion to recall
that the elimination rule really should be

∆; Γ ` A ∨B true ∆; Γ, x:A true ` J ∆; Γ, y:B true ` J

∆; Γ ` J
∨E

except that we do not want to write rule that tries to anticipate all possible
judgments. Instead, we analyze which instances of this generalized elimi-
nation form is necessary in the inference system at hand.

9 Monads and Computational Effects

The general idea is to think of expressions E ÷ A poss as effectful compu-
tations, possibly returning a value of type A. We abstract away from any
particular effects, such a non-termination, store, exceptions, etc. and isolate
the principles that apply to all effects. Then ♦A is a pure term, evaluating
a value dia E, where E is a potentially effectful computation of type A. We
revisit the earlier characteristic axioms in this light.

LECTURE NOTES JANUARY 21, 2010



Computational Interpretations of Modalities L4.13

A⊃♦A. The proof term λx:A. dia x simply coerces a value to a trivial
computation.

♦♦A⊃♦A. The proof term

λx:♦♦A. dia (let dia y = x in let dia z = y in z)

takes an expression whose evaluation may have an effect and possibly re-
turn another expression whose evaluation may have a second effect and
sequences the two computations, return the value of the latter.

�(A⊃B)⊃♦A⊃♦B. The proof term

λf :�(A⊃B). λx:♦A. .
let box g = f in dia (let dia y = x in g y)

takes a (pure) function and an argument which may have an effect, and
returns a computation which first evaluates the argument (possibly execut-
ing the effects) and then applies the function to the returned value. The
� around the function’s type guarantees that the function “survives” the
computational effect that may occur when the argument is evaluated.

In order to make this somewhat more precise, we extend the operational
semantics from earlier in the lecture. On terms, this is quite easy because
we consider dia as protecting the expression underneath from evaluation.

dia E value
♦V

We also have a new evaluation for expressions.

M −→ M ′

let dia x = M in F −→ let dia x = M ′ in F
♦D1

M −→ M ′

let box u = M in F −→ let box u = M ′ in F
�D1

let dia x = dia E in F −→ 〈〈E/x〉〉F
♦CD

To interpret that last rule it is important to keep in mind that the substitu-
tion 〈〈E/x〉〉F recurses over the structure of E, thereby incurring any effects
in E before those latent in F .

LECTURE NOTES JANUARY 21, 2010



L4.14 Computational Interpretations of Modalities

As a particular kind of effect, we consider output. We have a new prim-
itive expression outn÷ nat that prints a natural number and also returns it,
and a library function

write : nat → ♦nat
= λx:nat. dia (outx)

Then

upto : nat → ♦nat
upto (0) = write (0)
upto (s(n)) = dia (let dia x = upto n in let dia y = write (s(x)) in y)

This encoding is somewhat awkward, because no ordinary variable can
occur in the body of a let dia construct. In functional languages we there-
fore use not just a so-called monad (like ♦) but a strong monad. This inte-
grates into the type system the observation that all values are stable under
effects. It is fruitful and interesting to develop the logical foundations of
monads using lax logic [FM97], but we can also explain in the context of

necessity and possibility. In order to embed the ML function space A
ML→ B

we interpret is as �A′⊃♦�B′, where A′ and B′ are the translations of of A
and B, respectively. More details, including an operational interpretation
of lax logic in terms of strong monads can be found in [PD01].

LECTURE NOTES JANUARY 21, 2010



Computational Interpretations of Modalities L4.15

10 Rule Summary

Natural Deduction. Here, γ stands for C true or C poss.

x:A true ∈ Γ
∆; Γ ` A true

x

∆; Γ, x:A true ` B true

∆; Γ ` A⊃B true
⊃I

∆; Γ ` A⊃B true ∆; Γ ` A true

∆; Γ ` B true
⊃E

u::A valid ∈ ∆
∆; Γ ` A true

u

∆; • ` A true

∆; Γ ` �A true
�I

∆; Γ ` �A true (∆, u::A valid); Γ ` γ

∆; Γ ` γ
�E

∆; Γ ` A true

∆; Γ ` A poss
poss

∆; Γ ` A poss

∆; Γ ` ♦A true
♦I

∆; Γ ` ♦A true ∆; x:A true ` C poss

∆; Γ ` C poss
♦E

Substitution Operations. The rules for substitution [M/x]N , [M/x]eF ,
and 〈〈E/x〉〉F . Substitution for a valid variable [[M/u]] is compositional on
all proof terms and expressions, avoiding capture in the body of let box.

[M/x]x = M
[M/x]y = y for x 6= y
[M/x](λy:A.N) = λy:A. [M/x]N provided x 6= y, x 6∈ FV (M)
[M/x](N1 N2) = ([M/x]N1) ([M/x]N2)
[M/x](box N) = box N
[M/x](let box u = N1 in N2) = let box u = [M/x]N1 in [M/x]N2

[M/x](dia E) = dia ([M/x]eE)

[M/x]e(let dia y = N in F ) = let dia y = [M/x]N in F
[M/x]e(let box u = N in F ) = let box u = [M/x]N in [M/x]eF
[M/x]eN = [M/x]N

〈〈let dia y = N in E/x〉〉F = let dia y = N in 〈〈E/x〉〉F
〈〈let box u = N in E/x〉〉F = let box u = N in 〈〈E/x〉〉F
〈〈M/x〉〉F = [M/x]eF

LECTURE NOTES JANUARY 21, 2010



L4.16 Computational Interpretations of Modalities

Verifications and Uses. Here, γ stands for C ↑ or C ·↑· and P stands for
an atomic proposition or propositional variable.

∆; Γ ` P ↓
∆; Γ ` P ↑

↓↑

x:A ↓ ∈ Γ

∆; Γ ` A ↓
x

∆; Γ, x:A ↓ ` B ↑
∆; Γ ` A⊃B ↑

⊃I
∆; Γ ` A⊃B ↓ ∆; Γ ` A ↑

∆; Γ ` B ↓
⊃E

u::A⇓ ∈ ∆

∆; Γ ` A ↓
u

∆; • ` A ↑
∆; Γ ` �A ↑

�I
∆; Γ ` �A ↓ (∆, u::A⇓); Γ ` γ

∆; Γ ` γ
�E

∆; Γ ` A ↑
∆; Γ ` A ·↑·

poss

∆; Γ ` A ·↑·
∆; Γ ` ♦A ↑

♦I
∆; Γ ` ♦A ↓ ∆; x:A ↓ ` C ·↑·

∆; Γ ` C ·↑·
♦E

LECTURE NOTES JANUARY 21, 2010



Computational Interpretations of Modalities L4.17

Exercises

Exercise 1 Add disjunction and falsehood to the development of possibility in this
lecture.

(i) Give all versions of introduction and elimination rules.

(ii) Show local soundness and completeness.

(iii) Give a proof term assignment and show local reductions and expansions.

(iv) Extend the definition of substitution 〈〈E/x〉〉F as needed.

(v) Derive interaction laws for ♦(A ∨ B) and ♦⊥ if they exist or argue that
they do not. You may assume that verifications are complete for truth and
possibility.

Exercise 2 Demonstrate that

Incorrect Substitution Principle: If ∆; Γ ` A poss and ∆; x:A true `
C true then ∆; Γ ` C true

in indeed incorrect. Which property fails? Give a counterexample.

Exercise 3 An alternative proposal for possibility might be the following pair of
rules which avoids the use of a new judgment A poss.

∆; Γ ` A true

∆; Γ ` ♦A true
♦I

∆; Γ ` ♦A true ∆; x:A true ` ♦C true

∆; Γ ` ♦C true
♦E

Discuss which desirable properties of the deductive system we have given in this
lecture fail for these alternative rules, if any.

Exercise 4 Characterize the propositions such that ♦A ≡ A.

Exercise 5 Possibility is also a general construction, and we can create weaker
and weaker versions of possibility. Define a hierarchy of possibility operators ♦n

such that ♦0A ≡ A and ♦1A is like the current ♦A. In general, ♦n+1A should be
weaker then ♦nA.

Give a uniform system of natural deduction for iterated posibility, including
introduction and eliminations for ♦nA for arbitrary n. State the substitution prin-
ciple and show local soundness and completeness.

How do iterated ♦n operators interact with each other? Is there always a sim-
pler proposition equivalent to ♦n♦mA?

LECTURE NOTES JANUARY 21, 2010



L4.18 Computational Interpretations of Modalities

Exercise 6 The justification of the elimination rules suggested the extended ver-
sions of ∨E, ⊥E and �E with a conclusion of C poss for proofs and C ·↑· for
verifications.

Investigate the consequences of omitting these rules. Which desirable proper-
ties of the resulting system of deduction fail, if any?

Exercise 7 Both derived judgments of modal logic, A valid and A poss are asym-
metric in that the former is only allowed as a hypothesis and the latter only as a
conclusion.

Write out the fragment with implication, necessity, and possibility where the
new judgments are allowed on both sides. Which properties of the system presented
in this lecture fail, if any? Discuss the trade-offs between the two systems.

Exercise 8 In (non-modal) intuitionistic logic, if we define two different connec-
tives with the same introduction and elimination rules they will be logically equiv-
alent.

(i) Demonstrate this by defining a new implication A⊃′ B with the same rules
as A⊃B and then proving their equivalence.

(ii) Define a second version �′A with the same rules as �A. Can we prove that
�′A ≡ �A?

(iii) Does your answer to (ii) change if we define a new judgment A valid′ based
on the same judgmental principles as A valid and then internalize it as a
new connective �′A?

(iv) Define a second version ♦′A with the same rules as ♦A. Can we prove that
♦′A ≡ ♦A?

(v) Does your answer to (iv) change if we define a new judgment A poss′ based
on the same judgmental principles as A poss and then internalize it as a new
connective ♦′A?

Exercise 9 A generalized modality is any string of modal operators � and ♦.
In the fragment of intuitionistic modal logic with just �, there is just one distinct
modal operator, because ��A ≡ �A. In the fragment with just ♦, there is also just
one distinct modal operator, because ♦♦A ≡ ♦A. How many distinct generalized
modalities are there in intuitionistic modal logic with both � and ♦? Prove your
answer.

LECTURE NOTES JANUARY 21, 2010



Computational Interpretations of Modalities L4.19

References

[DP01] Rowan Davies and Frank Pfenning. A modal analysis of staged
computation. Journal of the ACM, 48(3):555–604, May 2001.

[FM97] M. Fairtlough and M.V. Mendler. Propositional lax logic. Infor-
mation and Computation, 137(1):1–33, August 1997.

[LL96] Peter Lee and Mark Leone. Optimizing ML with run-time
code generation. In Proceedings of the Conference on Programming
Language Design and Implementation (PLDI’96), pages 137–148,
Philadelphia, Pennsylvania, May 1996. ACM SIGPLAN.

[PD01] Frank Pfenning and Rowan Davies. A judgmental reconstruc-
tion of modal logic. Mathematical Structures in Computer Science,
11:511–540, 2001. Notes to an invited talk at the Workshop on In-
tuitionistic Modal Logics and Applications (IMLA’99), Trento, Italy,
July 1999.

[WLPD98] Philip Wickline, Peter Lee, Frank Pfenning, and Rowan Davies.
Modal types as staging specifications for run-time code gener-
ation. ACM Computing Surveys, 30(3es), September 1998.

LECTURE NOTES JANUARY 21, 2010



L4.20 Computational Interpretations of Modalities

LECTURE NOTES JANUARY 21, 2010


	Introduction
	Staged Computation
	Operational Semantics
	Source Expressions
	Possibility
	Verifications and Uses
	Proof Terms
	Generalized Elimination Rules
	Monads and Computational Effects
	Rule Summary

