Chapter 5

Linear Logic Programming

When we think of logic we generally first consider it as a discipline concerned
with the study of propositions, truth, and inference. This may appear at first
to be independent from any notion of computation. However, there are two
immediate connections: proofs as programs and proof search as computation.

In constructive logic (and our approach has been constructive) we can view
a proof as defining a construction (algorithm, program). For example, a proof
of AD B shows how to achieve goal B when given the resource A. Carrying out
such a construction when we actually have obtained resource A the corresponds
to computation. This notion of computation is most closely related to functional
programming, but because of the state-aware nature of linear logic it also has
some imperative flavor. We will discuss a computational interpretation of linear
logic along these lines in Chapter 77.

Another computational interpretation is closer to the way we have been
using linear logic so far. Reconsider, for example, the encoding of Petri nets in
linear logic. Each possible computation step of the Petri net is modeled by a
corresponding inference step in linear logic. As a result, reachability in a Petri
net corresponds to provability in its linear encoding. More importantly, each
possible computation of a Petri net corresponds to a proof, and carrying out a
computation corresponds to the construction of a proof. In other words, proof
search in linear logic corresponds to computation.

This leads to the question if we can exploit this correspondence in order
to design a programming language based on linear logic where computation is
indeed proof search. The result of computation then is a particular proof, or
possibly a collection or enumeration of proofs depending on the characteristics
of the language. A program in this setting is simply a collection of propositions
that, through their form, will lead the proof search engine down a particular
path, thereby achieving a particular computation. In order to make this both
feasible from the point of view of an implementation and predictable to the
programmer, we need to full linear logic. We would like to emphasize that
even on this fragment (called LHHF for Linear Hereditary Harrop Formulas),
not every specification is executable, nor is it intended to be. We hope the
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92 Linear Logic Programming

development and the examples in this chapter will clarify this point.

5.1 Logic Programming as Goal-Directed Search

Our first approach to logic programming is via the notion of goal-directed search.
It turns out that this view diverges from our earlier examples because it does
not incorporate any concurrency. However, some of our earlier encodings can
be rewritten to fit into the language given below.

Assume we are trying to prove Iy A = A where I' are the unrestricted
hypotheses (which correspond to the program), A are the linear hypotheses
(which correspond to current state) and A which corresponds to the goal. The
idea of goal-directed search is that we always first break down the structure
of the goal A until it is atomic (P). At that point we focus on one of the
hypotheses in I or A and apply consecutive left rules until the focus formula
matches P and we can solve the subgoals generated during this process. This
phase of the computation corresponds to a procedure call, where the generated
subgoals correspond to the procedure body which is then executed in turn.

In order to have a satisfactory logical interpretation of the program (in ad-
dition to the computational one above), we would like this search procedure
to be sound and non-deterministically complete. Soundness simply means that
we only find valid proof, which is easy to accomplish since we only restrict
the applications of ordinary sequent rules. Completeness means that for every
derivation for the original judgment there is a sequence of choices according to
the strategy above which finds this derivation. As we have seen in the develop-
ment of focusing (Section 4.2), the goal-directed strategy above is generally not
complete. However, it is complete if we restrict ourselves to right asynchronous
connectives, because focusing is complete and all the connectives are orthogonal
to each other.

This fragment (with some irrelevant, minor deviations) is called the system
of linear hereditary Harrop formulas (LHHF).

A = P|A1—OA2|A1&A2|T|A13A2|V$A

We obtain the foundation for its operational semantics simply from the focus-
ing system, restricted to the above connectives. Since they are all right asyn-
chronous, we only need two of the four judgments. We call this a system of
uniform proofs [MNPS91]. For the case of linear, this system has first been pro-
posed by Hodas and Miller [HM94, Hod94], although similar ideas for classical
linear logic had been developed independently by Andreoli [AP91, And92].

Goal-Directed Search. This corresponds to the inversion phase of the fo-
cusing system. Because all right asynchronous propositions are left synchronous,
we do not need to collect them into an ordered context €2 but add them directly
to the left synchronous hypotheses in A. We write

A= Af
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5.1 Logic Programming as Goal-Directed Search 93

From the focusing system we obtain the following rules.

IAJA=— B 1 A= Af A= B R
—R &
I'NA=— A—- B A= A&B 1
I'N'A; A= B
— TR DR
A= T4 INA=— ADBY

A = [a/z]A D
A= V. A

Procedure Call. This corresponds to the focusing phase of the focusing sys-
tem. In this case we can carry over the judgment directly

AAl = P

where A is the focus formula and P is always atomic. This judgment is also
called immediate entailment because A must decompose to directly yield P as
can be seen from the rules below.

This phase is triggered by a decision, if the goal formula is atomic.

AAl =P NAAAl = C
———— decideLL decideL!
IAJA=— P A A= Pq

During this phase, we simply carry out the left rules on the focus formula.
Since we can never obtain a left asynchronous proposition (there are none among
the linear hereditary Harrop formulas), we can only succeed if we obtain an
atomic proposition equal to P.

——  init
IioPy=P
IAi;BYy=—P A, — A9
—o L,
F,Al,AQ,A—OBli:>P
AAl =P ;A;Bl =P
&Ly &Lo
A AB |} =— P A A&B | =— P

;A;Bl =P I — Af
no left rule for T IAADB = P

DL

;A [t/2]A) = P
A Ve, A= P

Some of the premises of these rules refer back to goal-directed search. The
collection of these premises for a particular focusing step (that is, procedure
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call) corresponds to the procedure body. Operationally, they will be solved only
after we know if the init rule applies at the end of the sequence of focusing steps.

It is easy to see that uniform proofs are sound and complete with respect to
the sequent calculus via the soundness and completeness of focusing.!

5.2 An Operational Semantics

The system of uniform proofs from the previous section is only the basis of an
actual operational semantics for LHHF. There are still a number of choices left
and we have to specify how they are resolved in order to know precisely how a
query

A= Af

executes. We organize this discussion into the forms of the non-deterministic
choices that remain. We are not formal here, even though a formal description
can certainly be given.?

Existential Non-Determinism. This arises in the choice of the term ¢ in
the VL rule during the focusing phase. This is resolved by substituting instead a
logic variable X, where it is explicitly remember which parameters a the variable
X may depend on. For initial sequents

———init

I;oPl=P

we instead allow the hypothesis P and goal P’ and unify them instead of testing
them for equality. Since we can always find a most general unifier, this involves

no unnecessary overcommitment and we do not have to backtrack in order to
retain completeness.

Conjunctive Non-Determinism. If several subgoals arise during focusing,
or because we have a goal A;& Ay, we have to solve all subgoals but the order
presents a form of conjunctive non-determinism. We resolve this by always
solving the premises in the uniform proof rules from left to right. This has the
desirable effect that we only attempt to solve a subgoal once we have unified
the atomic goal P with the proposition P’ at the end of the focus formula.

Disjunctive Non-Determinism. Disjunctive non-determinism arises in the
choice of the focus formula once the goal is atomic, and in the choice of the
left rule if the focus formula is an alternative conjunction. This is resolved via
depth-first search and backtracking. For the decision how to focus, we use the
following order:

{add more formal statement]
2[several citations]
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1. First the linear or unrestricted hypotheses that were introduced during
proof search, where we try the most recently made assumption first (right-
to-left, in our notation).

2. Then we try the unrestricted assumptions that were fixed at the beginning
of the search (the program), trying the propositions from first to last (left-
to-right in our notation).

For alternative conjunctions as the focus formula, we first try the left conjunct
and then the right conjunct.

Resource Non-Determinism. Resource non-determinism arises in the —o L
rule, where we have to split assumptions between the premises. Conceptually,
this can be resolved by introducing Boolean constraints [HP97] and solving
them eagerly. In order to gain a better intuition what this means operationally,
equivalent systems that avoid explicit creation of constraints have been devel-
oped [CHP00]. We will give some intuition in Section 5.3 where we introduce
the input/output model for resource management.

Unfortunately, the way we treate disjunctive non-determinism via depth-
first search and backtracking means that there may be proofs we never find
because the interpreter following our operational semantics does not terminate.
Many attempts have been made to alleviate this difficulty, but none are entirely
satisfactory. Depth-first search seems to be critical to obtain a simple and
understandable operational semantics for programs that allows algorithms to
be implemented efficiently in a logic programming language.

Even though the interpreter is incomplete in this sense, the non-deterministic
completeness of the uniform proof system is still very important. This is because
we would like to be able to interpret failure as unprovability. Since the uniform
proof system is non-deterministically complete, we know that if the interpreter
fails finitely and reports no proof can be found because all choices have been
exhausted, then there cannot be a proof of the original goal.

To summarize, the interpreter may exhibit three behaviors.

1. Succeed with a proof. By soundness, the goal is provable. If we backtrack
further, we may get other proofs.

2. Fail. By non-deterministic completeness, the goal is unprovable and hence
not true in general.

3. Run. In this case we have no information yet. We cannot observe if the
interpreter will run forever, so we have to let it run and hope for eventual
termination, either with success or failure.

Note that these are exactly the same even if our interpreter were complete in
the strong sense. The only difference would be that if there is a proof, the
running interpreter would eventually succeed. It cannot always fail if there
is no proof, because of the undecidability of this fragment (which is easy to
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verify, see Exerciseexc:lhhf-undec). One should note, however, that even simple
decidable fragments may exhibit non-terminating behavior.

This observation reminds us that linear logic programming does not provide
a general theorem prover. It is not possible to write an arbitrary specification
(even in the LHHF fragment) and obtain a reasonable program. Instead, it
is often possible to write programs at a very high level of abstraction, and
sometimes even possible to few specification directly as programs, but just as
often this is not the case. Some examples below should help to clarify this.

5.3 Deterministic Resource Management

In order to use linear hereditary Harrop formulas effectively as a logic pro-
gramming language, we need to understand how resource non-determinism is
resolved. This can be understood in three stages—we give here only the first
and most important one.

The only rule where we have to consider how to split resources is the —o L
rule.

Ay By=P A = A9
F,Al,AQ,A—OBli:>P

— L

Note that the left premise will be solved first and then the right premise. The
way we resolve this choice is that we pass all the resources to the left premise
and keep track which ones were actually needed in the proof of B | = P.
The remaining ones are passed to the second premise once the first premise has
succeeded. This strategy only make sense because we have already committed
to solve conjunctive non-determinism by left-to-right subgoal selection.

This describes the input/output model of resource management. We reuse
some of the notation introduced to describe Boolean constraints, by writing
w:A[1] for a linear hypothesis that is there, and u:A[0] for a linear hypothesis
that has been consumed somewhere. No other Boolean expression arise here.
The main judgments are now

F; A[\AO — A ﬂ
[AN\Ag; All = P

where Aj stands for the input resources that may be consumed and Ao stands
for the output resources that were not consumed. Note that the judgment is
hypothetical in Aj but not in Agp. First, the goal-directed phase of search.
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;A uwA[l\Ao, uw:Al0] = B {
T A[\AO — A—oB ﬂ

—R

IANAo = AT T;A1\Apo= B

&R
T A[\AO — A&B 1
A[QAO F,A;A[\AO:>BTT
TR DR
F;A[\AO:>TTT F;A[\AO:>ADBTT

IS ANAo = [a/z]A
T A[\AO — Vx. A T

The right rule for linear implication requires that the linear assumption be
consumed (A[0]). For T we have to allow an arbitrary subset of the input
hypotheses to be consumed. This relation is defined by

Ar2 Ao
. A, u:A[0] 2 Ao, u:A[0]

A D Ao Ar2 Ao
Ar,u:A[l] 2 Ao, u:A[l] Ar,u:A[l] 2 Ao, u:Al0]

The non-determinism that arises in this rule has to be eliminated in a second
step (see [CHP00]).?

Second, the transition between the phases. Note that linear hypotheses are
consumed here, and not at the rules for initial sequents.

F;A[\Ao;Ali:>P F,A;A[\Ao;A@ﬁC
decideL decideL!
;A wA[l\Ap, w:Al0) = P f DA AN\NA = P 1

Third, the focusing phase. The critical rule is the one for — L. where re-
sources are passed through from left to right with Ajs representing the hy-
potheses that have not been consumed in the proof of the first premise. Also
note that for initial sequent we simply pass through all linear hypothesis rather
than checking if they are empty. This is because we are no longer required,
locally, that all linear assumptions are used, since some pending subgoal may
consume it later.

3[maybe reformulate and add here]
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init
LANAB Pl =P

F;A[\AM;Bl}:>P F,AM\AO:>ATT

I;ANAG;A—B |l — P -
[ANAg A= P I[A\Ag; B =P
&Ly &Lo
F; A[\Ao; A& B l} = P F; A[\Ao; A& B l} = P

;AN\Ag; Bl =P I — A
no left rule for T IANAg;ADBI =P

DL

I ANAg; [t/2z]A ) = P
;AN\Ap; V2. A = P

In order to execute a query I'; A = A we instead execute
[ AINA[0] = A1

where (u1:41,...,un:Ap)[b] is shorthand for ui:Aq[b],. .., un:A,[b]. This guar-
antees that all linear hypotheses have indeed be consumed.

In the statement of soundness and completeness, however, we need to be
more general to account for intermediate states. The idea of soundness is that if
I'; A\Ap = A 1) then if we delete all hypotheses from Aj that are still in A,
we should have a uniform proof from the resulting hypotheses. We therefore
define subtraction, A; — Ap = A, where A; and Ap have Boolean annotations
and A does not.

Ar—Ao=A
P (A, wA[L]) — (Ap,w:A[0]) = (A, u:A)
Ar—Ap=A Ar—Ap=A
(Ar,wAll]) = (Ar,wAll]) = A (Ar, wA[0]) — (Ar, w:A0]) = A

We can then prove soundness directly.

Theorem 5.1 (Soundness of I/O Resource Management)
1. Ifr;A[\AO = Af then A; — Ao =A and ;A = A{}
2. IfT;AN\NAp; Al = P then A; —Ap=A and T;A; A} = P

Proof: By mutual induction on the structure of the given derivation.* i

4[check for lemmas and write out some cases]
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For the completness direction we need to generalize the induction hypothesis
somewhat differently.

Theorem 5.2 (Completeness of I/O Resource Management)
1. If T; A = A A then T'; A[1], Ap\A[0], Ao = A 1} for any Ao.
2. IfT;A; Al = P then T; A[l], Ao\A[0], Ap; A} = P for andy Ao.

Proof: By mutual induction on the structure of the given derivation.® i

5.4 Some Example Programs

We start with some simple programs. Following the tradition of logic program-
ming, we write implications in the program (I") in reverse so that A o— B means
B — A. Implication in this direction is left associative, and subgoals solved
(visually) from left-to-right. So,

Po-Qo-R

stands for (P o— Q) o— R which is the same as R —o(Q — P). If P matches the
current atomic goal, then first subgoal to be solved is @ and then R. This is
consistent with the informal operational semantics explained above.

The first program is non-terminating for the simple query p.

Uy : po—p.
Uupg : p.

Then a goal = p under this program will diverge, since it will use u; first,

which produces the identical subgoal of = p. If we reorder the clauses
Uupg : p.
Uy : po—p.

the query = p will produce the immediate proof (ug) first and, if further
answer are requested, succeed arbitrarily often with different proofs. We can
slightly complicate this example by adding an argument to p.

uo : p(0).
us : V. p(s(x)) o—p(x).

In a query we can now leave an existential variable, indicated by an uppercase
letter, = p(X). this query will succeed and print the answer substitution
X = 0. If further solutions are requested, the program will enumerate X = s(0),
X =s(s(0)), etc. In general, most logic programming language implementation
print only substitutions for existential variables in a query, but not other aspects
of the proof it found.

The trivial examples above do not take advantage of the expressive power
of linear logic and could equally well be written, for example, in Prolog.

For the next example we introduce lists as terms, using constructors nil and
cons. For example, the list 1, 2, 3 would be written as cons(1, cons(2, cons(3, nil))).
A program to enumerate all permutations of a list is the following.

5[check for lemmas and write out some cases]
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po : perm(cons(X, L), K)o—(elem(X) —o perm(L, K))
p1 : perm(nil,cons(X, K)) o— elem(X) o— perm(nil, K)
p2 :  perm(nil, nil)

Here we have left universal quantifiers on X, L, and K implicit in each
declaration in order to shorten the program. This is also supported by imple-
mentations of logic programming languages.

We assume a query of the form = perm(l, K') where [ is a list and K is a
free existential variable. The program iterates over the list [ with pg, creating a
linear hypothesis elem(t) for every element ¢ of the list. Then it repeatedly uses
clause p; to consume the linear hypothesis in the output list K. When there are
no longer any linear hypotheses, the last clause ps will succeed and therefore
the whole program.
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