Chapter 2

Linear Natural Deduction

Linear logic, in its original formulation by Girard [Gir87] and many subsequent
investigations was presented as a refinement of classical logic. This calculus of
classical linear logic can be cleanly related to classical logic and exhibits many
pleasant symmetries. On the other hand, a number of applications in logic and
functional programming can be treated most directly using the intuitionistic
version. In this chapter we present a basic system of natural deduction defining
intuitionistic linear logic.

Our presentation is a judgmental reconstruction of linear logic in the style
of Martin-Lof [ML96]. It follows the traditions of Gentzen [Gen35], who first
introduced natural deduction, and Prawitz [Pra65], who thoroughly investigated
its theory. A similar development of modal logic is given in [PDO01]. The way
of combining of linear and unrestricted resources goes back to Andreoli [And92]
and Girard [Gir93] and, in an explicitly intuitionistic version, Barber [Bar96].

2.1 Judgments and Propositions

In his Siena lectures from 1983 (finally published in 1996), Martin-Lof provides
a foundation for logic based on a clear separation of the notions of judgment and
proposition. He reasons that to judge is to know and that an evident judgment
is an object of knowledge. A proof is what makes a judgment evident. In logic,
we make particular judgments such as “A is a proposition” or “A is true”,
presupposing in the latter case that A is already known to be a proposition. To
know that “A is a proposition” means to know what counts as a verification of
A, whereas to know that “A is true” means to know how to verify A. In his
words [ML96, Page 27]:

The meaning of a proposition is determined by [...] what counts as
a verification of it.

This approach leads to a clear conceptual priority: we first need to under-
stand the notions of judgment and evidence for judgments, then the notions of
proposition and verifications of propositions to understand truth.
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10 Linear Natural Deduction

As an example, we consider the explanation of conjunction. We know that
A A\ B is a proposition if both A and B are propositions. As a rule of inference
(called conjunction formation):

A prop B prop

AF
AN B prop

The meaning is given by stating what counts a verification of A A B. We say
that we have a verification of A A B if we have verifications for both A and B.
As a rule of inference:

A true B true Al

AN B true

where we presuppose that A and B are already known to be propositions. This
is known as an introduction rule, a term due to Gentzen [Gen35] who first
formulated a system of natural deduction. Conversely, what do we know if we
know that AA B is true? Since a verification of AA B consists of verifications for
both A and B, we know that A must be true and B must be true. Formulated
as rules of inference (called conjunction eliminations):

A/\Btme/\EL A/\Btme/\ER

A true B true

From the explanation above it should be clear that the two elimination rules
are sound: if we define the meaning of conjunction by its introduction rule then
we are fully justified in concluding that A is true if A A B is true, and similarly
for the second rule.

Soundness guarantees that the elimination rules are not too strong. We
have sufficient evidence for the judgment in the conclusion if we have sufficient
evidence for the judgment in the premise. This is witnessed by a local reduction
which constructs evidence for the conclusion from evidence for the premise.

D &
A true B true
AT
AN B true D
— ANE;, — At
A true rue

A symmetric reduction exists for AEgr. We only consider each elimination im-
mediately preceded by an introduction for a connective. We therefore call the
property that each such pattern can be reduced local soundness.

The dual question, namely if the elimination rules are sufficiently strong,
has, as far as we know, not been discussed by Martin-Lof. Of course, we can
never achieve “absolute” completeness of rules for inferring evident judgments.
But in some situations, elimination rules may be obviously incomplete. For
example, we might have overlooked the second elimination rule for conjunction,
AER. This would not contradict soundness, but we would not be able to exploit
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2.2 Linear Hypothetical Judgments 11

the knowledge that A A B is true to its fullest. In particular, we cannot recover
the knowledge that B is true even if we know that A A B is true.

In general we say that the elimination rules for a connective are locally
complete if we can apply the elimination rules to a judgment to recover enough
knowledge to permit reconstruction of the original judgment. In the case of
conjunction, this is only possible if we have both elimination rules.

D D
AN B true A A B true
- ANEp, ——— AFEpR
D A true B true
A A B true —E AA B true N

We call this pattern a local expansion since we obtain more complex evidence
for the original judgment.

An alternative way to understand local completeness is to reconsider our
meaning explanation of conjunction. We have said that a verification of A A B
consists of a verification of A and a verification of B. Local completeness entails
that it is always possible to bring the verification of A A B into this form by a
local expansion.

To summarize, logic is based on the notion of judgment where an evident
judgment is an object of knowledge. A judgment can be immediately evident
or, more typically, mediately evident, in which case the evidence is provided by
a proof. The meaning of a proposition is given by what counts as a verification
of it. This is written out in the form of introduction rules for logical connectives
which allow us to conclude when propositions are true. They are complemented
by elimination rules which allow us to obtain further knowledge from the knowl-
edge of compound propositions. The elimination rules for a connective should
be locally sound and complete in order to have a satisfactory meaning expla-
nation for the connective. Local soundness and completeness are witnessed by
local reductions and expansions of proofs, respectively.

Note that there are other ways to define meaning. For example, we fre-
quently expand our language by notational definition. In intuitionistic logic
negation is often given as a derived concept, where —A is considered a notation
for A D 1. This means that negation has a rather weak status, as its meaning
relies entirely on the meaning of implication and falsehood rather than having
an independent explanation. The two should not be mixed: introduction and
elimination rules for a connective should rely solely on judgmental concepts and
not on other connectives. Sometimes (as in the case of negation) a connective
can be explained directly or as a notational definition and we can establish that
the two meanings coincide.

2.2 Linear Hypothetical Judgments

So far we have seen two forms of judgment: “A is a proposition” and “A is
true”. These are insufficient to explain logical reasoning from assumptions.
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12 Linear Natural Deduction

For this we need hypothetical judgments and hypothetical proofs, which are

new primitive notions. Since we are primarily interested in linear logic, we

begin with linear hypothetical judgments and linear hypothetical proofs. We will

postpone discussion of (unrestricted) hypothetical judgments until Section 2.4.
We write the general form of a linear hypothetical judgment as

oy dy BT

which expresses “J assuming Jy through J, linearly” or “J under linear hy-
potheses Jy through J,”. We also refer to Ji,...,J, as the antecedents and J
as the succedent of the linear hypothetical judgment. The intent of the qualifier
“linear” is to indicate that each hypothesis J; in the antecedent is to be used
exactly once. The order of the linear hypotheses is irrelvant, so we will silently
allow them to be exchanged.

We now explain what constitutes evidence for a linear hypothetical judg-
ment, namely a linear hypothetical proof. In a hypothetical proof of the judg-
ment above we can use the hypotheses J; as if they were available as resources.
We can consequently substitute an arbitrary derivation of J; for the uses of a
hypothesis J; to obtain a judgment which no longer depends on J;. Thus, at
the core, the meaning of hypothetical judgments relies upon substitution on the
level of proofs, that is, supplanting the use of a hypothesis by evidence for it.

The first particular form of linear hypothetical judgment we need here is

ui:Aq true, ..., un:A, true H A true

where we presuppose that A; through A, and A are all propositions. Note that
the propositions A; do not need to be distinct. We therefore label them with
distinct variables u; so we can refer to them unambiguously. We will sometimes
omit the labels for the sake of brevity, but one should keep in mind that

Aj true, ..., A, true H A true

is just a shorthand. We write A for a collection of linear hypotheses of the form
above. The special case of the substitution principle for such hypotheses has
the form

Linear Substitution Principle for Truth
If A = A true and A’, u:A true = C true then A, A K C true.

Here we write A’, A for the concatenation of two collections of linear hypotheses
with distinct labels. We can always rename some labels in A or A’ in order to
satisfy this side condition. We further have the general rule for the use of
hypotheses.

Linear Hypothesis Rule

U
w:A true = A true
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2.3 Propositions in Linear Logic 13

We sometimes write hyp as the justification for the hypothesis rule if the label
u is omitted or irrelevant.

Note that the substitution principle and the linear hypothesis rule together
enforce that assumptions are used exactly once. Viewed from the conclusion,
the substitution principle splits its resources, distributing it to the two premises.
Therefore each assumption in A, A’ will have to be used in either the proof of
A or the proof of C' from A, but not in both. The linear hypothesis rule does
not allow any additional resources among the assumptions besides A, thereby
forcing each resource to be used.

We emphasize that the substitution principle should not be viewed as an
inference rule, but a property defining hypothetical judgments which we use
in the design of a formal system. Therefore it should hold for any system of
connectives and inference rules we devise. The correctness of the hypothesis
rule, for example, can be seen from the substitution principle.

One further notation: [D/u]€ is our notation for the result of an appeal to
the substitution principle. That is,

D & [D/u]E

It A = A true and Al u:A W C true then A, A" 1= C true

2.3 Propositions in Linear Logic

Based on the notion of linear hypothetical judgment, we now introduce the
various connectives of linear logic via their introduction and elimination rules.
We skip, for now, the obvious formation rules for propositions. For each of
the connectives we carefully check the local soundness and completeness of the
rules and verify the preservation of resources. Also for purely typographical
reasons, we abbreviate “A true’ by just writing “A” in the linear hypothetical
judgments.

Simultaneous Conjunction. Assume we have some resources and we want
to achieve goals A and B simultaneously, written as A® B (pronounced “A and
B” or “A tensor B”). We need to split our resources into A and A’ and show
that with resources A we can achieve A and with A’ we can achieve B.

AWA A KB
AA W A®B

®I

Note that the splitting of resources, viewed bottom-up, is a non-deterministic
operation.

The elimination rule should capture what we can achieve if we know that we
can achieve both A and B simultaneously from some resources A. We reason
as follows: If with A, B, and additional resources A’ we could achieve goal C,
then we could achieve C' from resources A and A’.

AKF+AQB A uwA,wB W C
AN C

®FE
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14 Linear Natural Deduction

Note that by our general assumption, u and w must be new hypothesis labels
in the second premise. The way we achieve C' is to commit resources A to
achieving A and B by the derivation of the left premise and then using the
remaining resources A’ together with A and B to achieve C.

As before, we should check that the rules above are locally sound and com-
plete. First, the local reduction

Dy D,
Ay H A Ay + B
: S . [DyulDafule
A, Ay HA®B A uw:A,w:B +C B ALALA K C
®FE
Ay, Ay, A" HC

which requires two substitutions for linear hypotheses and the application of the
substitution principle. The derivation on the right shows that the elimination
rules are not too strong.

For local completeness we have the following expansion.

u w
wA A w:B = B
D ®I
D AKFA®B wA,w:B +-A® B
AwAeB " AW A®B o

The derivation on the right verifies that the elimination rules are strong enough
so that the simultaneous conjunction can be reconstituted from the parts we
obtain from the elimination rule.

Alternative Conjunction. Next we come to alternative conjunction A&B
(pronounced “A with B”). It is sometimes also called internal choice. In its
introduction rule, the resources are made available in both premises, since we
have to make a choice which among A and B we want to achieve.

AKFA A+ B
A H A’B

&l

Consequently, if we have a resource A&B, we can recover either A or B, but
not both simultaneously. Therefore we have two elimination rules.

A H A’B A H A’B

&EL —&ERr
A KA A KB

The local reductions formalize the reasoning above.

D &
A KA A+ B
A H A’B A KA
—&EL
A KA
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2.3 Propositions in Linear Logic 15

D &
A KA A KB
A K A&B A+ B
— &ERr
A+ B

We may recognize these rules from intuitionistic natural deduction, where the
assumptions are also available in both premises. The embedding of unrestricted
intuitionistic logic in linear logic will therefore map intuitionistic conjunction
A A B to alternative conjunction A&B. The expansion is also already familiar.

D D
- A W AB A W A2B
—  &F, ———— &Fy
AW AgB <~ F A A A B
al
A W A&B

Linear Implication. The linear implication or resource implication internal-
izes the linear hypothetical judgment at the level of propositions. We A — B
(pronounced “A linearly implies B” or “A lolli B”) for the goal of achieving B

with resource A.

A, w:A B
R |
A H+A—-oB

If we know A — B we can obtain B from a derivation of A.

AW A—-B A A
A A" B

—o

As in the case for simultaneous conjunction, we have to split the resources,
devoting A to achieving A — B and A’ to achieving A.

The local reduction carries out the expected substitution for the linear hy-
pothesis.

D

A, w:A + B

e £ N [€/w]D

At A—-B A KA B AA W B
—FE

AA B
The rules are also locally complete, as witnessed by the local expansion.

D

—_—w
A H+A—oB wA A
D . oF
At A—-B B A,w:A & B
- I
At A—-B
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16 Linear Natural Deduction

Unit. The trivial goal which requires no resources is written as 1.

—1I
-1

If we can achieve 1 from some resources A we know that we can consume all

those resources.
A1 A C 1

AA K C

E

The rules above and the local reduction and expansion can be seen as a case of 0-
ary simultaneous conjunction. In particular, we will see that 1 ® A is equivalent
to A.

&

—1I
1 A H-C €
£ F AkC
A O

D —1I

D N A -1 S 1
A K1 E 1E

A1

Top. There is also a goal which consumes all resources. It is the unit of
alternative conjunction and follows the laws of intuitionistic truth.

TI
AKT

There is no elimination rule for T and consequently no local reduction (it is
trivially locally sound). The local expansion replaces an arbitrary derivation by
the introduction rule.

E TI
AT AKT

Disjunction. The disjunction A ® B (also called external choice) is charac-
terized by two introduction rules.

AwA AW B
AWwAsB - AAaB

As in the case for intuitionistic disjunction, we therefore have to distinguish two
cases when we know that we can achieve A & B.

A KA B A uA +=C A, w:B I C
AN HC

&)
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2.3 Propositions in Linear Logic 17

Note that resources A’ appear in both branches, since only one of those two
derivations will actually be used to achieve C, depending on the derivation of
A @ B. This can be seen from the local reductions.

D
A KA
SRS 0 & F N [D/u]€
At AdB AN wAWC  A,wB K C E AN HKC
SE
AN C
D
A KB
At+A®B A,u:AHC  A,wB HC E AN KC
SE
AN C
The local expansion is straightforward.
SE— _w
wA A w:B =+ B
D D VI VIR
AW AeB =E AW A®B wA A B w:B +-A®B
VE

AHA® B

Impossibility. The impossibility 0 is the case of a disjunction between zero
alternatives and the unit of @. There is no introduction rule. In the elimination
rule we have to consider no branches.

A KO0
AA HC

There is no local reduction, since there is no introduction rule. However, as in
the case of falsehood in intuitionistic logic, we have a local expansion.

D
b Ao
A -0 " Awo

Universal Quantification. Quantifiers do not interact much with linearity.
We say Vx. A is true if [a/z]A is true for an arbitrary a. This is an example of
a parametric judgment that we will discuss in more detail in Section 77?.

A Ha/z]A A HVa. A

a

A FVz. A A K [t/z]A

The label a on the introduction rule is a reminder the parameter a must be
“new”, that is, it may not occur in A or Vx. A. In other words, the deriva-
tion of the premise must parametric in a. The local reduction carries out the
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18 Linear Natural Deduction

substitution for the parameter.

D
A ¥ [a/z]A
o T e [t/a]D
Abrved TR AW (a4
— _WE
A ¥ [t/z]A

Here, [t/a]D is our notation for the result of substituting ¢ for the parameter a
throughout the deduction D. For this substitution to preserve the conclusion,
we must know that a does not already occur in Vz. A or A. The local expansion
for universal quantification is even simpler.

D
A Ve A
A HFVz. A A K [a/x]A
A Ve A

Existential Quantification. Again, this does not interact very much with
resources.

A K [t/z]A AHdx. A A wila/z]A = C
|

- 6 ElEa
A W3z A AA HC

The second premise of the elimination rule must be parametric in a, which is
indicated by the superscript a. In the local reduction we will substitute for this
parameter.

D

A W [t/z]A
- & D/ullt/alE
Abaea A, wla/z]A W C =R [A,/A]’[ H/—]C’

JE®
AA O

The proviso on occurrences of a guarantees that the conclusion and hypotheses
of [t/a]€ have the correct form. The local expansion for existential quantification
is also similar to the case for disjunction.

> D wla/z]A H [a/z]A -

AWde A —F A4 wla/z]A W 3z, A
A 3z A

JE©

This concludes the purely linear operators. Negation and another version of
falsehood are postponed to Section 7?7, since they may be formally definable, but
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2.4 Unrestricted Hypotheses in Linear Logic 19

their interpretation is somewhat questionable in the context we have established
so far.

The connectives we have introduced may be classified as to whether the re-
sources are split among the premises or distributed to the premises. Connectives
of the former kind are called multiplicative, the latter additive. For example,
we might refer to simultaneous conjunction also as multiplicative conjunction
and to alternative conjunction as additive conjunction. When we line up the
operators against each other, we notice some gaps. For example, there seems to
be only a multiplicative implication, but no additive implication. Dually, there
seems to be only an additive disjunction, but no multiplicative disjunction. This
is not an accident and is pursued further in Exercise 2.4.

2.4 Unrestricted Hypotheses in Linear Logic

So far, the main judgment permits only linear hypotheses. This means that
the logic is too weak to embed ordinary intuitionistic or classical logic, and we
have failed so far to design a true extension. In order to accomodate ordinary
intuitionistic or classical reasoning, we introduce a new judgment, “A is valid”,
written A valid. We say that A is valid if A is true, independently of the any
resources. This means we must be able to prove A without any resources. More
formally:

Validity
A valid if - + A true.

Note that validity is not a primitive, but a notion derived from truth and linear
hypothetical judgments. The judgment - t A trueis an example of a categorical
judgment that asserts independence from hypotheses and also arises in modal
logic [PD01]. We can see that, for example, A — A valid and (A&B) — A valid
for any propositions A and B.

Validity by itself is a completely straightforward judgment. But matters
become interesting when we admit hypotheses about the validity of propositions.
What laws should govern such hypotheses? Let us assume A valid, which means
that - H A true. First note, that obtaining an instance of A can be achieved
without requiring any resources. This means we can generate as many copies
of the resource A as we wish, or we may decide not to generate any copies at
all. In other words, uses of an assumption A wvalid should be unrestricted rather
than linear. If we use “F” to separate unrestricted hypotheses from a judgment
we are trying to deduce, then our main judgment would have the form

By walid, . . ., By, valid b (Ay true, . .., A, true = C true)
which may be read: under the assumption that By, . .., By, are valid and Ay, ..., A,

are true we can prove C. Alternatively, we could say: with inexhaustible re-
sources By, ..., By, and linear resources A, ..., An, we can achieve goal C.
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20 Linear Natural Deduction

Instead, we will stick with a more customary way of writing this dual hypo-
thetical judgment form by separating the two forms of assumption by a semi-
@, ”

colon “”. As before, we also label assumptions of either kind with distint
variables.

(v1:By valid, . . ., Uy B, valid); (ug:Aq true, . . ., un: Ay valid) F C true

It is critical to remember that the first collection of assumptions is unrestricted
while the second collection is linear. We abbreviate unrestricted assumptions
by I and linear assumptions by A.

The valid assumptions are independent of the state and can therefore be
used freely when proving other valid assumptions. That is,

Validity under Hypotheses
't Avalidif T;- = A true.

From this definition we can directly derive a new form of the substitution prin-
ciple.

Substitution Principle for Validity
If ;- A true and (', v:Avalid); A F C true then I'; A+ C true.

Note that the same unrestricted hypotheses I' appear in the first two jugments,
which contrasts with the linear substitution principle where the linear hypothe-
ses are disjoint. This reflects the fact that assumptions in I' may be used
arbitrarily many times in a proof. Note also that the first judgment expresses
I' b A walid, which is necessary so we can substitute for the assumption that
Awalid. For a counterexample see Exercise 2.1.

We also have a new hypothesis rule which stems from the definition of va-
lidity: if A is valid than it definitely must be true.

Unrestricted Hypothesis Rule

v
(T, v:A valid); - = A true

Note that there may not be any linear hypotheses (which would be unused), but
there may be additional unrestricted hypotheses since they need not be used.

We now restate the original substitution principle and hypothesis rules for
our more general judgment. Their form is determined by the unrestricted nature
of the validity assumptions. We assume that comma binds more tightly than
semi-colon, but may still parenthesize hypotheses to make the judgments more
easily readable.

Substitution Principle for Truth

If ;A F A true and T (A, u:Atrue) B C true then T'; (A, A) +
C true.
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2.4 Unrestricted Hypotheses in Linear Logic 21

Hypothesis Rule

u
T uw:Atruet A true

All the rules we presented for pure linear logic so far are extended by adding
the unrestricted context to premises and conclusion (see the rule summary on
page 24). At this point, for example, we can capture the blocks work example
completely inside linear logic. The idea is that the proposition stating the legal
moves do not depend on the current state and are therefore given in I'.

Returning to the blocks world example, a planning problem is now repre-
sented as judgment

FQ; AQ - AQ

where I'g represent the rules which describe the legal operations, Ay is the initial
state represented as a context of the propositions which are true, and A is the
goal to be achieved. For example, the initial state considered early would be
represented by

Ay = empty, tb(a), on(b, a), clear(d), tb(c), clear(c)

where we have omitted labels for the sake of brevity. The rules are represented
by unrestricted hypotheses, since they may be used arbitrarily often in the
course of solving a problem. We use the following for rules for picking up or
putting down an object. We use the convention that simultaneous conjunction
® binds more tightly than linear implication —o.

r, —
geton : Vz.Vy. empty ® clear(z) ® on(zx,y) —o holds(z) ® clear(y),
gettb : Vz. empty ® clear(z) ® tb(z) —o holds(z),
puton : Vz.Vy. holds(z) ® clear(y) — empty ® on(z,y) ® clear(x),
puttb : Vz. holds(z) — empty ® tb(z) ® clear(x).

Each of these represents a particular possible action, assuming that it can be
carried out successfully. Matching the left-hand side of one these rules will
consume the corresponding resources so that, for example, the proposition empty
with no longer be available after the geton action has been applied.
The goal that we would like to achieve on(a,b), for example, is represented
with the aid of using T.
Ap=on(a,b)® T

Any derivation of the judgment
To; Ao = A

represents a plan for achieving the goal Ag from the initial situation state Ay.

We now go through a derivation of the particular example above, omitting
the unrestricted resources I'y which do not change throughout the derivation.
Our first goal is to derive

empty, tb(a), on(b, a), clear(d), tb(c), clear(c), empty + on(a,b) ® T
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22 Linear Natural Deduction

By using ®I twice we can prove
empty, on(b, a), clear(b) F empty ® clear(b) ® on(b, a)

Using the unrestricted hypothesis rule for geton followed by VE twice and — E
we obtain

empty, clear(b), on(b, a) - holds(b) ® clear(a)

Now we use QE with the derivation above as our left premise, to prove our
overall goal, leaving us with the goal to derive

tb(a), tb(c), clear(c), holds(b), clear(a) - on(a,b) ® T

as our right premise. Observe how the original resources Ag have been split
between the two premises, and the results from the left premise derivation,
holds(b) and clear(a) have been added to the description of the situation. The
new subgoal has exactly the same form as the original goal (in fact, the con-
clusion has not changed), but applying the unrestricted assumption geton has
changed our state.

Proceeding in the same manner, using the rule puttb next leaves us with the
subgoal

tb(a), tb(c), clear(c), clear(a), empty, clear(b), tb(b)  on(a,b) ® T

We now apply getth using a for x and proceeding as above which gives us a
derivation of holds(a). Instead of ®E, we now use the substitution principle
yielding the subgoal

tb(c), clear(c), clear(b), tb(b), holds(a) F on(a,b) ® T
With same technique, this time using puton, we obtain the subgoal
tb(c), clear(c), tb(b), empty, on(a, b), clear(a) - on(a,b) ® T

Now we can conclude the derivation with the ®I rule, distributing resource
on(a,b) to the left premise, which follows immediately as hypothesis, and dis-
tributing the remaining resources to the right premise, where T follows by T1I,
ignoring all resources.

Note that different derivations of the original judgment represent different
sequences of actions (see Exercise 2.5).

Even though it is not necessary in the blocks world example, in order to
embed full intuitionistic (or classical) logic into linear logic, we need connectives
that allows us to make unrestricted assumptions. We show two operators of
this form. The first is unrestricted implication, the second a modal operator
expressing validity as a proposition.
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2.4 Unrestricted Hypotheses in Linear Logic 23

Unrestricted Implication. The proof of an unrestricted implication A D B

allows an unrestricted assumption A valid while proving that B is true.
(T,w:A); A+ B INAFADB I''HA
— DI DE

I'NAFADB I'AFB

In the elimination we have to be careful to postulate the wvalidity of A rather

than just its truth, expressed by requiring that there are no linear hypotheses.

The local reduction uses the substitution principle for unrestricted hypotheses.

D
(T,w:A); A+ B
NG £ . [D/u)€
I"AFADB I;-FA B I;A+B
OE
I"ARB

In Exercise 2.2 you are asked to show that the rules would be locally unsound
(that is, local reduction is not possible), if the second premise in the elimination
rule would be allowed to depend on linear hypotheses. The local expansion
requires “weakening”, that is, adding unused, unrestricted hypotheses.
D’ ”
(T,w:A);A-ADB (T,uw:A);-FHA
DE
= (T,w:A); A+ B

D)
I'NAFADB

D
I'NAFADB

U

Here, D’ is constructed from D by adjoining the unused hypothesis u to every
judgment, which does not affect the structure of the derivation.

“Of Course” Modality. Girard [Gir87] observed that there is an alternative
way to connect unrestricted and linear hypotheses by internalizing the notion
of validity via a modal operator !A, pronounced “of course A” or “bang A”.

I'-FA

—

I';-H1A
The elimination rule states that if we can derive F !A than we are allowed to
use A as an unrestricted hypothesis.

IARIA (T, v:A); A= C
!
; (A AYEC

This pair of rules is locally sound and complete via substitution for a valid
assumption.

E

D
I'''HA
Ty £ . [D/v]E
I;-F14 (T, v:A); A’ - C EomARC
'E
;A FC
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e
I'v:A);-FHA
D D —( vA) I
T'AkLlA ~—E IARIA (T,v:A);- 14
’ IE
IARLA

Using the of course modality, one can define the unrestricted implication A D B
as (1A) — B. It was this observation which gave rise to Girard’s development of
linear logic. Under this interpretation, the introduction and elimination rules
for unrestricted implication are derived rules of inference (see Exercise 2.3).

We now summarize the rules of intuitionistic linear logic. A very simi-
lar calculus was developed and analyzed in the categorical context by Bar-
ber [Bar96]. It differs from more traditional treatments by Abramsky [Abr93],
Troelstra [Tro93], Bierman [Bie94] and Albrecht et al. [ABCJ94] in that struc-
tural rules remain completely implicit. The logic we consider here comprises
the following logical operators.

Propositions A = P Atoms
| Aj — A | A1 ®@ Ay |1 Multiplicatives
| Al&AQ | T | A1 D A2 | 0 Additives
|Ve. A | Jz. A Quantifiers
|ADB|!A Exponentials

Recall that the order of both linear and unrestricted hypotheses is irrelevant,
and that all hypothesis label in a judgment must be distinct.

Hypotheses.
u v
TuwAE A (T,v:A);-H A
Multiplicative Connectives.
;A FA I':AsF B AFA®B T (A uwA wB)FC
®I ®FE
I; (A, u:A) - B I'NAFA—B ;A FA
I'NAFA—B I;(AAY-B
IAR1L ;A FC

1E

11
I;-F1 ; (A AYEC
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Additive Connectives.

I' A+ A&B B

. . — &k
IARA F,AI—B&I T:AF A
I';A+ A&B I'AF AB

——F &ERr
I"ARB

— I
ART no T elimination

INARA
IAFA® B
I"AFB
IAFA9 B

ol AFA®B T (A wA)FC Ty (A, w:B)FC
; (A AYEC

&)

@I

I;ARO
— 0E
no 0 introduction — T;(A,A)YFC

Quantifiers.

AF [a/x]A IiARVz. A

a

N —— VE
IARVZ. A ;AR [t/z]A

;AR [t/z]A IARdz A T (A" wia/z]A) = C
—dI
ARz A ; (A AYEC

JE®

Exponentials.
(T,v:A); A+ B I AFADB I;'FA
—— DI DE
I'NAFADB I'AEB

I;-FA IARIA (T, v:A); A= C
T !
;- 1A ; (A, A) O

E

We close this section with another example that exploits the connectives of
linear logic. The first example is a menu consisting of various courses which can
be obtained for 200 French Francs.
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Menu A: FF 200 FF(200) —
Onion Soup or Clear Broth ((0S&CB)
Honey-Glazed Duck ® HGD
Peas or Red Cabbage ® (P®RC)
(according to season)
New Potatoes ® NP
Chocolate Mousse ® ((FF(30) . CM)&1)
(FF 30 extra)
Coffee ®C
(unlimited refills) ® (1C))

Note the two different informal uses of “or”, one modelled by an alter-
native conjunction and one by a disjunction. The option of ordering choco-
late mousse is also represented by an alternative conjunction: we can choose
(FF(30) — CM)&1 to obtain nothing (1) or pay another 30 francs to obtain the
mousse.

2.5 Exercises

Exercise 2.1 Give a counterexample that shows that the restriction to empty
linear hypotheses in the substitution principle for validity is necessary.

Exercise 2.2 Give a counterexample which shows that the elimination DE
would be locally unsound if its second premise were allowed to depend on linear
hypotheses.

Exercise 2.3 If we define unrestricted implication A D B in linear logic as an
abbreviation for (!14) — B, then the given introduction and elimination rules
become derived rules of inference. Prove this by giving a derivation for the con-
clusion of the DE rule from its premises under the interpretation, and similarly
for the DI rule.

For the other direction, show how !A could be defined from unrestricted
implication or speculate why this might not be possible.

Exercise 2.4 Speculate bout the “missing connectives” of multiplicative dis-
junction, multiplicative falsehood, and additive implication. What would the
introduction and elimination rules look like? What is the difficulty? any ideas
for how these difficulties might be overcome?
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Exercise 2.5 In the blocks world example, sketch the derivation for the same
goal Ay and initial situation Ag in which block b is put on block ¢, rather than
the table.

Exercise 2.6 Model the Towers of Hanoi in linear logic in analogy with our
modelling of the blocks world.

1. Define the necessary atomic propositions and their meaning.

2. Describe the legal moves in Towers of Hanoi as unrestricted hypotheses
T’y independently from the number of towers or disks.

3. Represent the initial situation of three towers, where two are empty and
one contains two disks in a legal configuration.

4. Represent the goal of legally stacking the two disks on some arbitrary
other tower.

5. Sketch the proof for the obvious 3-move solution.

Exercise 2.7 Consider if ® and & can be distributed over @ or wvice versa.
There are four different possible equivalences based on eight possible entail-
ments. Give natural deductions for the entailments which hold.

Exercise 2.8 In this exercise we explore distributive and related interaction
laws for linear implication. In intuitionistic logic, for example, we have the
following (AAB)DC 4 AD>(BD>C)and AD(BAC)4- (ADB)A(ADC),
where —F is mutual entailment as in Exercise 77.

In linear logic, we now write A 4+ A’ for linear mutual entailment, that
is, A’ follows from linear hypothesis A and wice versa. Write out appropriate
interaction laws or indicate none exists, for each of the following propositions.

1. A—~(B®C)
2. (A® B) = C)
3. A1

4. 1A

5. A—o(B&C)

6. (A&B)—C

7. A—oT

8. T—A

9. A—o(B®C)
10. (A® B)—C
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11. A—0
12. 0—< A
13. A—(B—C)
14. (A—B)—C

Note that an interaction law exists only if there is a mutual linear entailment—
we are not interested if one direction holds, but not the other.

Give the derivations in both directions for one of the interaction laws of a
binary connective ®, &, @, or —o, and for one of the interaction laws of a logical
constant 1, T, or 0.

Exercise 2.9 Consider three forms of equivalence of propositions in linear logic.
e A o—o B which should be true if A linearly implies B and vice versa.

e A ~ B which should be true if, independently of any linear hypotheses, A
linearly implies B and vice versa.

e A = B which should be true if A implies B and B implies A, where both
implications are unrestricted.

1. For each of the these connectives, give introduction and elimination rules
and show local soundness and completeness of your rules. If it is not
possible, argue why. Be careful that your rules do not refer to other
connectives, but rely entirely on judgmental concepts.

2. Discuss if the specification above is unambiguous or if interpretations es-
sentially different from yours may be possible.

3. Using your rules, prove each linear entailment A op; B true H A op,
B true that holds where op, are equivalence operators.

4. [Extra Credit] Give counterexamples for the entailments that do not hold.
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