Chapter 4

Proof Search

Linear logic as introduced by Girard and presented in the previous chapter is a
rich system for the formalization of reasoning involving state. It conservatively
extends intuitionistic logic and can therefore also serve as the logical basis for
general constructive mathematics. Searching for proofs in such an expressive
logic is difficult, and one should not expect silver bullets.

Depending on the problem, proof search in linear logic can have a variety of
applications. In the domain of planning problems (see Section 2.4) searching for
a proof means searching for a plan. In the domain of concurrent computation
(see Petri nets in Section 3.2 or the m-calculus in Section 3.6) searching for
a proof means searching for possible computations. In the domain of logic
programming (which we investigate in detail in Chapter ?7?), searching for a
proof according to a fixed strategy is the basic paradigm of computation. In
the domain of functional programming and type theory (which we investigate
in Chapter ??), searching for a proof means searching for a program satisfying
a given specification.

Each application imposes different requirements on proof search, but there
are underlying basic techniques which recur frequently. In this chapter we take
a look at some basic techniques, to be exploited in subsequent chapters.

4.1 Bottom-Up Proof Search and Inversion

The literature is not in agreement on the terminology, but we refer to the process
of creating a derivation from the desired judgment on upward as bottom-up proof
search. A snap-shot of a bottom-up search is a partial derivation, with undecided
judgments at the top. Our goal is to derive all remaining judgments, thereby
completing a proof.

We proceed by selecting a judgment which remains to be derived and an
inference rule with which it might be inferred. We also may need to determine
exactly how the conclusion of the rule matches the judgment. For example,
in the ®R rule we need to decide how to split the linear hypotheses between

Draft of October 11, 2001

68 Proof Search

the two premises. After these choices have been made, we reduce the goal of
deriving the judgment to a number of subgoals, one for each premise of the
selected rule. If there are no premises, the subgoal is solved. If there are no
subgoals left, we have derived the original judgment.

One important observation about bottom-up proof search is that some rules
are invertible, that is, the premises are derivable whenever the conclusion is
derivable. The usual direction states that the conclusion is evident whenver the
premises are. Invertible rules can safely be applied whenever possible without
losing completeness, although some care must be taken to retain a terminating
procedure in the presence of unrestricted hypotheses. We also separate weakly
invertible rules, which only apply when there are no linear hypotheses (besides
possibly the principal proposition of the inference rule). For example, we cannot
apply the rule 1R whenever the judgment is I'; A - 1, although it is safe to do
so when there are no linear hypotheses. Similarly, we cannot use the initial
sequent rule to infer I'; A, A = A unless A = -. Strongly invertible rules apply
regardless of any other hypotheses.

Theorem 4.1 (Inversion Lemmas) The following table lists invertible, weakly
invertible, and non-invertible rule in intuitionistic linear logic.

Strongly Invertible Weakly Invertible Not Invertible

—R —o L,
®L, 1L 1R ®R
&R, TR &Ly, &L2
L, OL ®R1, BRe
VR, dL VL, R
DR, 'L 'R DL

We exclude the init and copy rules, since they are neither proper left nor proper
right rules.

Proof: For invertible rules we prove that each premise follows from the conclu-
sion. For non-invertible rules we give a counterexample. The two sample case
below are representative: for invertible rules we apply admissibility of cut, for
non-invertible rules we consider a sequent with the same proposition on the left
and right.

Case: —R is invertible. We have to show that I'; (A, A) = B is derivable
whenver I'; A = A — B is derivable, so we assume I'; A =— A — B.
We also have I'; A, A— B =—> B, which follows by one — L rule from
two initial sequents. From the admissibility of cut (Theorem 3.8) we then
obtain directly I'; (A, A) = B.

Case: —oL is not invertible. Consider -; A— B =—> A — B for parameters A
and B. There is only one way to use — L to infer this, which leads to
s+ = A and -; B = A —o B, neither of which is derivable. Therefore
—o LL is not invertible in general.

Draft of October 11, 2001

4.1 Bottom-Up Proof Search and Inversion 69

O

As a final, general property for bottom-up proof search we show that we
can restrict ourselves to initial sequents of the form I'; P = P, where P is an

atomic proposition. We write I'; A = A for the restricted judgment whose
rules are as for I'; A = A, except that initial sequents are restricted to atomic

propositions. Obviously, if I'; A = A then I'; A = A.

Theorem 4.2 (Completeness of Atomic Initial Sequents) If ;A — A
then T'; A = A.

Proof: By induction on the the structure of D :: (I'; A = A). In each case
except initial sequents, we appeal directly to the induction hypothesis and infer

I'; A = A from the results. For initial sequents, we use an auxiliary induction
on the structure of the proposition A. We show only one case—the others
are similar in that they follow the local expansions, translated from natural
deduction to the setting of the sequent calculus. If local completeness did not
hold for a connective, then atomic initial sequents would be incomplete as well.

Case: A = A; ® Ay. Then we construct

Dy Do
F;A1:_>A1 F,A2:_>A2

®R
F;Al,AQ :_> A1 ® A2
QL

F;A1®A2 :_>A1®A2
where Dy and D5 exist by induction hypothesis on A; and As.

O

The theorems in this section lead to a search procedure with the following
general outline:

1. Pick a goal sequent to solve.
2. Decide to apply a right rule to the consequent or a left rule to a hypothesis.

3. Determine the remaining parameters (either how to split the hypotheses,
or on the terms which may be required).

4. Apply the rule in the backward direction, reducing the goal to possibly
several subgoals.

A lot of choices remain in this procedure. They can be classified according to
the type of choice which must be made. This classification will guide us in
the remainder of this chapter, as we discuss how to reduce the inherent non-
determinism in the procedure above.

Draft of October 11, 2001

70

Proof Search

Conjunctive choices. We know all subgoals have to be solved, but the order
in which we attempt to solve them is not determined. In the simplest case,
this is a form of don’t-care non-determinism, since all subgoals have to be
solved. In practice, it is not that simple since subgoals may interact once
other choices have been made more deterministic. Success is a special case
of conjunctive choice with no conjuncts.

Disjunctive choices. We don’t know which left or right rule to apply.
Invertible rules are always safe, but once they all have been applied, many
possibilities may remain. This is a form of don’t-know non-determinism,
since a sequence of correct guesses will lead to a derivation if there is one.
In practice, this may be solved via backtracking, for example. Failure is a
special case of a disjunctive choice with zero alternatives.

Resource choices. We do not know how to divide our resources in the
multiplicative rules. This is a special case of don’t-know non-determinism
which can be solved by different techniques collectively referred to as “re-
source managment”. Resource management interacts tightly with other
disjunctive and conjunctive choices.

Universal choices. In the VR and JL rules we have to choose a new pa-
rameter. Fortunately, this is a trivial choice, since any new parameter will
work, and its name is not important. Hence this is a form of don’t-care
non-determinism.

Existential choices. In the JR and VL rules we have to choose a term ¢
to substitute for the bound variable. Since there are potentially infinitely
many terms (depending on the domain of quantification), this is a form
of don’t-know non-determinism. In practice, this is solved by unification,
discussed in Section ?77.

4.2 Focusing

Focusing combines two basic phases in order to reduce non-determinism in proof
search while remaining sound and complete.

1. (Inversion) Strongly invertible rules are applied eagerly. The order of these

rule applications does not matter, so this is an instance of don’t-care non-
determinism.

. (Focusing) After some steps we arrive at a sequent where all applicable

rules with the exception of copy or init are non-invertible. Now we fo-
cus, either on a particular hypothesis or on the conclusion and apply a
sequence of non-invertible rules until we have exposed an invertible princi-
ple connective. At this point in the proof search we return to the inversion
phase.

Draft of October 11, 2001

4.2 Focusing 71

We refer to this strategy as focused proof search. The idea and method are
due to Andreoli [And92]; it is closely related to logic programming and the
notion of uniform proof [MNPS91] as we will see in Chapter ?7?.

Just like the sequent calculus followed inevitably from natural deduction,
focused proof search seems to follow inevitably from the sequent calculus. It
is remarkably robust in that in our experience, any logic that admits a clean
sequent calculus also admits a similarly clean focusing calculus. This is true
even for logics such as classical logic for which good natural deduction systems
that arise from judgmental considerations are elusive.

While the basic intuition is simple, giving an unambiguous specification of
focusing is a non-trivial task. Both the proper representation of the don’t-care
non-determinism and the notion of focus proposition for phase (2) require some
experience and (eventually) lengthy correctness proofs.

In order to aid the description of the rules, we define some classes of propo-
sitions. We say A is right asynchronous if the top-level connective of A has
a strongly invertible right rule. Similarly, A is left asynchronous if the top-
level connective of A has a strongly invertible left rule. The intuition is that
of asynchronous communication, where a sending process can proceed immedi-
ately without waiting for receipt of its message. Dually, a proposition is right or
left synchronous is its top-level connective has a non-invertible or only weakly
invertible right or left rule, respectively.

Atomic P
Right Asynchronous A;— As, A1&As, T, A1 D Ay, V. A
Left Asynchronous A; ® As,1, A1 @ A3,0,!A4,3x. A
Right Synchronous A; ® Az, 1, A; ® A3,0,!A,3x. A
Left Synchronous Aj; — A, A1&As, T, A1 D Ag,Va. A

Note that the left asynchronous and right synchronous propositions are iden-
tical, as are the right asynchronous and left synchronous. We therefore really
need only two classes of propositions, but this tends to be very confusing.

Inversion. The first phase of proof search decomposes all asynchronous con-
nectives. This means there is a lot of don’t-care non-determinism, since the
order in which the rules are applied is irrelevant. We build this into our system
by fizing a particular order in which the asynchronous connectives are decom-
posed: first the succedent, then the antecedents from right to left. This means
we need a new form of hypothetical judgment, an ordered hypothetical judg-
ment, since otherwise we cannot prescribe a fixed order. We thoroughly treat
this judgment form in Chapter ?7. We write

A0=— A1
where

I are unrestricted hypotheses (which may be arbitrary),
A are linear hypotheses that may not be left asynchronous,
) are ordered hypotheses (which may be arbitrary),

A is the goal (which may be arbitrary).

Draft of October 11, 2001

79 Proof Search

The first set of rules treats all right asynchronous connectives.

A0 A= B AQ0=— A1 A Q= B R
—R &
IAQ0=— A—-B1 A Q= A&B 1
INA A Q= B
— TR DR
AQ=Tq iAQ=— ADB

A Q= [a/z]A
AQ=Vze. A

vR*

Once the goal proposition is no longer asynchronous, we proceed with the
hypotheses in 2, decomposing all left asynchronous propositions in them. We
write

L,AQr—=C

where
I’ are unrestricted hypotheses (arbitrary)
A are linear hypotheses (not left asynchronous)
Q2 are ordered hypotheses (arbitrary)
C is the goal (not right asynchronous)

First, we have the rule to transiton to this judgment.

A Q1) = C, C not right asynchronous
A= C1

Next we have rules to decompose the left asynchronous proposition in €2 in
order, that is, at the right end of the ordered hypotheses.

A0ABY—C . A= C
& 1L
AQ0AQB = C L0010 =C
LAQAY=C L;00BYy=C
@L oL
L AQA BYy=C ;A Q0= C
DA A Q= C | A0, [a/z]Ay = C
L L
L,ANANY=C A0 A= C

When we encounter a proposition that is not left asynchronous, we move it
into A so that we can eventually eliminate all propositions from 2.

A A; Q0 = C, A not left asynchrounous
LAQAY=C

Draft of October 11, 2001

4.2 Focusing 73

Decision. When we start from I';-;Q = A 1, searching backwards, we can
always reach a situation of the form I''; A’; - ff = C for each leaf where C is not
right asynchronous and A’ contains no propositions that are left asynchronous.
At this point we need to decide which proposition to focus on. Note that we
always focus on a single proposition. First the case we focus on the right. For
this we need a new judgment

A= Al

where
I are unrestricted hypotheses (arbitrary),

A are linear hypotheses (not left asynchronous),
A is the focus proposition (arbitrary).

If we focus on the left, we need an analogous judgment.
LAA=C

where
I’ are unrestricted hypotheses (arbitary),

A are linear hypotheses (not left asynchronous),
A is the focus proposition (arbitrary),
C' is the succedent (not right asynchronous)

The decision is between the following rules that transition into these two
jugments.

A= CJ, C notatomic

decideR
A= C
LAA=C NAAAl=C
decideL decideL!
AA - = C TAA - = C

Note that decideL! is justified by the copy rule.

Focusing. Once we have decided which proposition to focus on, we apply a
succession of non-invertible rules.

A= Al Ay = Ay |

®RR — 1R
F;Al,A2:>A1®A2lL F,:>1li
ITA= Al I A= B
@Ry @©Ro
A= A® B A= A@e B

;A = [t/z]A

no right rule for 0 A= 3dz. A
— R
=14y

Draft of October 11, 2001

74 Proof Search

The last rule is a somewhat special case: because R is weakly right invertible,
we immediately transition back to break down the right asynronous connectives
in A. In the other weakly right invertible rule, 1R, we conclude the proof so no
special provision is necessary.

The corresponding left rules are as follows:

Ay B = C AL -— A

—o L,
F,Al,AQ,A—OBli:>C
LAA=C L;ABl=C
&Ly &Lo
A AB L = C A AB | = C

;ABl = C - = A1
no left rule for T INA;AD Bl = C

DL

;A [t/2]A) = C
A Ve Al = C

Eventually we must break down the focus proposition to the point where it
is no longer synchronous. If it is atomic, we either succeed or fail in our overall
proof attempt. In other cases we switch back to the inversion judgment.

——— init
;AP =P

I'A; A= C A not atomic and not left synchronous
LAA=C

A= Aq

JR
A= Al

The soundness of these rules is relatively easy to establish, since, in the
end, the system just represents a restriction on the application of the usual
left, right, initial and copy rules. Completeness of the corresponding system for
classical linear logic has been proven by Andreoli [And92] and is lengthy. The
completeness of the rules above has not yet been considered, but Andreoli’s
techniques would seem to apply fairly directly.’

In order to state soundness formally, we use convention that A, Q joins the
contexts A and €2, ignoring the order of the hypotheses in €.

Theorem 4.3 (Soundness of Focusing)
1. IfT;A;Q = A1 then T; (A, Q) = A.
2. IfT; Q0 = C then T (A, Q) = C.

Y[This might make an interesting class project.]

Draft of October 11, 2001

4.2 Focusing 75

3 IfT"A = Al thenT;A = A.
4. IfT; 0 A) = C then T; (AA) = C

Proof: By straightforward simultaneous induction on the structure of the given
deductions. O

Draft of October 11, 2001

76

Proof Search

Draft of October 11, 2001

Bibliography

[ABCJ94] D. Albrecht, F. Bauerle, J. N. Crossley, and J. S. Jeavons. Curry-

[Abr93]

[And92]

[Bar96]

[Bib86]

[Bie94]

[BS92]

[Cer95]

[Dos93]

[Gen35]

Howard terms for linear logic. In 77, editor, Logic Colloquium ‘94,
pages 77-77 77, 1994.

Samson Abramsky. Computational interpretations of linear logic.
Theoretical Computer Science, 111:3-57, 1993.

Jean-Marc Andreoli. Logic programming with focusing proofs in
linear logic. Journal of Logic and Computation, 2(3):197-347, 1992.

Andrew Barber. Dual intuitionistic linear logic. Technical Report
ECS-LFCS-96-347, Department of Computer Science, University of
Edinburgh, September 1996.

Wolfgang Bibel. A deductive solution for plan generation. New
Generation Computing, 4:115-132, 1986.

G. Bierman. On intuitionistic linear logic. Technical Report 346,
University of Cambridge, Computer Laboratory, August 1994. Re-
vised version of PhD thesis.

G. Bellin and P. J. Scott. On the w-calculus and linear logic.
Manuscript, 1992.

Tliano Cervesato. Petri nets and linear logic: a case study for logic
programming. In M. Alpuente and M.I. Sessa, editors, Proceed-
ings of the Joint Conference on Declarative Programming (GULP-
PRODE’95), pages 313-318, Marina di Vietri, Italy, September
1995. Palladio Press.

Kosta DoSen. A historical introduction to substructural logics. In Pe-
ter Schroeder-Heister and Kosta DoSen, editors, Substructural Log-
ics, pages 1-30. Clarendon Press, Oxford, England, 1993.

Gerhard Gentzen. Untersuchungen {iiber das logische Schlieflen.
Mathematische Zeitschrift, 39:176-210, 405—431, 1935. Translated
under the title Investigations into Logical Deductions in [Sza69].

Draft of October 11, 2001

78

BIBLIOGRAPHY

[Gir87]

[Gir93]

[Lin92]

[Mil92]

[Mi199]

[MLY6]

[MNPS91]

[MOMO91]

[PDO1]

[Pra65]

[Sce93]

[SHDY3]

[Sza69]

J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1-102,
1987.

J.-Y. Girard. On the unity of logic. Annals of Pure and Applied
Logic, 59:201-217, 1993.

P. Lincoln. Linear logic. ACM SIGACT Notices, 23(2):29-37, Spring
1992.

D. Miller. The w-calculus as a theory in linear logic: Preliminary
results. In E. Lamma and P. Mello, editors, Proceedings of the Work-
shop on Extensions of Logic Programming, pages 242—265. Springer-
Verlag LNCS 660, 1992.

Robin Milner. Communicating and Mobile Systems: the w-Calculus.
Cambridge University Press, 1999.

Per Martin-Lo6f. On the meanings of the logical constants and the
justifications of the logical laws. Nordic Journal of Philosophical
Logic, 1(1):11-60, 1996.

Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov.
Uniform proofs as a foundation for logic programming. Annals of
Pure and Applied Logic, 51:125-157, 1991.

N. Marti-Oliet and J. Meseguer. From Petri nets to linear logic
through categories: A survey. Journal on Foundations of Computer
Science, 2(4):297-399, December 1991.

Frank Pfenning and Rowan Davies. A judgmental reconstruction of
modal logic. Mathematical Structures in Computer Science, 11:511—
540, 2001. Notes to an invited talk at the Workshop on Intuitionistic
Modal Logics and Applications (IMLA’99), Trento, Italy, July 1999.

Dag Prawitz. Natural Deduction. Almquist & Wiksell, Stockholm,
1965.

A. Scedrov. A brief guide to linear logic. In G. Rozenberg and
A. Salomaa, editors, Current Trends in Theoretical Computer Sci-
ence, pages 377-394. World Scientific Publishing Company, 1993.
Also in Bulletin of the European Association for Theoretical Com-
puter Science, volume 41, pages 154-165.

Peter Schroeder-Heister and Kosta DosSen, editors. Substructural
Logics. Number 2 in Studies in Logic and Computation. Clarendon
Press, Oxford, England, 1993.

M. E. Szabo, editor. The Collected Papers of Gerhard Gentzen.
North-Holland Publishing Co., Amsterdam, 1969.

Draft of October 11, 2001

BIBLIOGRAPHY 79

[Tro92]

[Tro93]

A. S. Troelstra. Lectures on Linear Logic. CSLI Lecture Notes
29, Center for the Study of Language and Information, Stanford,
California, 1992.

A. S. Troelstra. Natural deduction for intuitionistic linear logic.
Prepublication Series for Mathematical Logic and Foundations ML-
93-09, Institute for Language, Logic and Computation, University
of Amsterdam, 1993.

Draft of October 11, 2001

