Midterm Exam

15-814 Types and Programming Languages
Frank Pfenning

October 12, 2021

Name: Sample Solution Andrew ID: fp

Instructions

e This exam is closed-book, closed-notes.
¢ You have 80 minutes to complete the exam.
e There are 4 problems.

e For reference, on pages 8-11 there is an appendix with the syntax, statics, and dynamics for
our call-by-value language.

Parallel Corecursive

A-Calculus Polymorphism Pairs Types

Prob1 | Prob2 | Prob3 | Prob4 | Total

Score 25 35 40 50 150

Max 25 35 40 50 150




1 A-Calculus (25 points)

Consider the following combinators as defined in the A-calculus (remembering the convention

that a b ¢ stands for (a b) c):

*

SwaxR~
Il

Task 1 (10 pts). In each of the following problems you are asked to find a definition of the com-
binator on the left only in terms of applications constructed from the given combinators if one
exists. In particular, you are not allowed to use A-abstractions. We filled in the first column for

you as an example.

Ax.x
AL Y. x
AT Ay y

AT AY. Az.x 2y

Az Ay Az .z (y 2)

AT AY. T Yy

I = K*K
K* = KI
K = CK*
K* = CK
I = K*K*
I = W K

Task 2 (15 pts). A simple type 7 for a A-calculus expression e is most general if any type of e can
be obtained by substitution of types for type variables. Complete the following table with most

using only K and K*
using only I and K
using only K* and C
using only K and C
using only K* and C'

using only K and W

general types (we have filled in the first one for you as an example):

I a—a
K a— (8= a)
K* a—(8—p)
(@a=pf—=7)=>B—=a—=7)
B (@a=B)=(y—=a) = (y—5)
(a=a—=p)=(a—=p)




2 Polymorphism (35 points)
Bit strings can be defined in the polymorphic A-calculus with the type
bits = Va.(a—a)—= (a—a) > a—
We use the representation function "z for bit strings x. For example,
ex : bits

ex = Aa.)\bg. )\bl Ae. bo (bl (bl (bo (b1 6)))) = "01101™

Task 1 (15 pts). Complete the following definitions

b0 : bits — bits where b0 "z ="0x"

b0 = Ax. Ao Abg. Aby. Ae. by (z [a] by by €)
bl : ©bits — bits wherebl "z ="1x"

bl = Ax. Ao Abg. Aby. Ae. by (z[a] by by €)
e = bits wheree="."

e = Aca.A\bg. \by. Ae. e

Task 2 (10 pts). Complete the following definition of the functions that flips every bit in the input.
You may use the definitions from Task 1 and make auxiliary definitions if necessary.

flip . Dbits — bits

flip = Ax. x [bits| b1 b0 e

Task 3 (10 pts). Complete the following definition of the parity function, where parity "z returns
"07if x has an even number of 1s and "1 if 2 has an odd number of 1s. You may use the definitions

from Tasks 1 and 2 and make auxiliary definitions if necessary.

parity :  bits — bits

parity = Az. z [bits] (\y. y) flip (b0 e)




3 Parallel Pairs (40 points)

We add a new type constructor of parallel pairs 11 || T2 to our call-by-value language with the
following constructs.

Types T ou= |
Expressions e = ---|((e1,e2)) | case e ((z1,22) =€)

Parallel pairs are “super-eager” in that they can step both components at the same time whenever
possible. For example, writing v for values and L = fix f. f we would have

(e1, L) does not have a value
(L, e2)) does not have a value
{(v1, v2) is a value

((Azx)vr, Az Ay z)vavz) =2 (vr,va))

We provide the typing rules and one critical stepping rule.

I'ter:m Ther:n ‘ F'kFe:m || Dyop:m,xe:mbe 7
tp/ppair tp/casepp
LF {(er,e2) : 71 || 72 I'kcasee ((x1,z2) =€) : 7’
e1 value eo value _ e1 ey ez > eh .
val/ppair — step/ppair,
(€1, e2)) value ((e1, e2)) = (e, €5)

Task 1 (20 pts). Complete the set of rules for e — €’ involving the constructors and destructors
for type 71 || 2. You should ensure that the following theorems continue to hold: Preservation,
Progress, Finality of Values, and Determinacy. See the Appendix for a statement of these theo-
rems. Please number your rules (1), (2), ... so you can reference them in the answers to the next
set of questions if necessary.

e1— €] vy val vy val ey €l
step/ppair,,
{(er, v2)) = (e, va)) {(v1, e2)) = (v, €3))

step/ppair,

ey — €

step/case/ppair,
case eg (((z1,x2)) = e3) — case ef, ({(x1,z2)) = e3)

v1 value vy value

case <<’U1,’U2>> (<<331,.’L’2>> = 63) — [vl/xl][vg/xg]eg

step/case/ppair

In the next few tasks we ask you to add or delete exactly one stepping rule (leaving everything
else unchanged) so that one of the four key properties is now violated while the others remain true.
Either write out the rule to be added, or indicate the rule to be deleted. When neither is possible,



just write “impossible”. You do not need to justify this answer further. If needed, refer to the rules
in Task 1 by the number you assigned to them.

Task 2 (5 pts). Add or delete one rule such that preservation fails, while progress, finality of
values, and determinacy continue to hold.

That’s impossible. First, we observe that deleting a rule would not disturb preservation.

Second, we cannot add a rule to violate preservation while maintaining progress, finality
of values, and determinacy. By progress, every expression e : 7 is either a value or reduces.
Adding a rule to reduce a value violates finality of values. Adding a rule to reduce an expres-
sion to an alternate result would break determinacy.

Task 3 (5 pts). Add or delete one rule such that progress fails, while preservation, determinacy,
and finality of values continue to hold.

We remove step/ppair, (but actually removing any stepping rule works).

Task 4 (5 pts). Add or delete one rule such that determinacy fails, while preservation, progress,
and finality of values continue to hold.

We add a rule
e1— €}

(le1, e2)) = ((er, e2)

Task 5 (5 pts). Add or delete one rule such that finality of values fails, while preservation,
progress, and determinacy continue to hold.

This is impossible. If we add a rule to reduce a value ((v1, v2)) then determinacy will fail
for case ((v1,v2)) ({x1,x2) = e).




4 Corecursive Types (50 points)

A corecursive type vo. 7 is similar to a recursive type po. 7 except that it is lazy. We have a con-
structor roll and a destructor unroll, corresponding to fold and unfold, respectively. We specify:

e e
val/roll step/unroll/roll step/unroll;
roll e value unroll (roll €) — e unroll e — unroll ¢’
F'ke:[va.t/a]r 'ke:va.r
tp/roll tp/unroll
Ckrolle:va.t It unrolle: [va.7/alT

Task 1 (5 pts). The preservation theorem states thatif - - e : 7 and e — ¢ then - F ¢’ : 7. The
proof of this theorem is by induction. State by which form of induction and on which expression
or judgment.

By rule induction on the derivation of e — ¢’

Task 2 (15 pts). Provide all new cases in the proof of the preservation theorem pertaining to
corecursive types.

Case:

step/unroll/roll
unroll (roll e1) — €3

where e = unroll (roll e1) and €’ = e;.

Fe:T Given
- unroll (roll e1) : 7 By equality
-Froll e; : vav. o for some o with 7 = [va. o /ajo By inversion (rule tp/unroll)
ke [va.o/alo By inversion (rule tp/roll)
ke T By equality
Case:
e1 — €}

step/unroll;

unroll ey — unroll €}

where e = unroll e and €’ = unroll €.

Fe:T Given
-Funroll ey @ 7 By equality
-k e1 : va. o for some o with 7 = [va. o /alo By inversion (rule tp/unroll)
ke iva.o By induction hypothesis
-Funroll €] : [va. o /alo By rule tp/unroll
keT By equality




For reference, we fix the usual recursive type of natural numbers.

nat = pa.(zero: 1)+ (succ: «)
zero : nat

zero = fold (zero- ())

succ : nat— nat

succ = An.fold (succ-n)

Now consider the type stream of potentially infinite streams of natural numbers. As an example,
we provide a definition of a potentially infinite stream of zeros (written informally as 0, 0,0, .. .).

stream = va.nat x «
zeros . Stream
zeros = fixs.roll (zero, s)

Task 2 (5 pts). Show the value v such that zeros —* v or indicate it doesn’t terminate. You may
freely use the definitions above.

v = roll (zero, zeros)

Task 3 (10 pts). Complete the definition of count, where count k should produce the stream &, k +
1,k +2,.... You may freely use the definitions above.

count : nat— stream

count = fix f. \k. roll (k, f (succ k))

Task 4 (15 pts). Complete the definition of nth, where nthn s returns k,, in the stream s = ko, k1, k2, . . ..
You may freely use the definitions above.

nth : nat — stream — nat

nth = fix f. An. As. case (unroll s) ((k, s’) = case (unfold n) (zero- _ =k |succ-n' = fn's))




Appendix: Language Reference

Abstract Syntax
Types T o= m—=n|Vor|la|n x| 1Y 60:n) | paT
Terms e == x|Ar.elejer (=)
| Aa.e|elr] (V)
| (e1,e2) | case e ((x1,x2) = ¢€') (x)
| () fcasee(() =€) (1)
| k-e|casee (i-x; = €i)ier (+)
| casee () (0)
| fold e | unfold e (1)
| fixf.el|f
Contexts I' == -|T,atype|T,x:7 (all variables distinct)
Judgments
I ctx I' is a valid context
I'E 7 type 7 isavalid type presupposes I ctx
I'e:7  expression e hastype ™ presupposes! ctx, ensures I - T type
e value expression e is a value  presupposes - - e : T for some 7
e e expression e steps to ¢/ presupposes - |- ¢ : T for some T
Theorems

Preservation. If -+e:7and e ¢ then-+ ¢ : 7.

Progress. For every expression - I- e : 7 either e — ¢’ for some €’ or e value.
Finality of Values. If - - e : 7 and e value then there is no ¢’ with e — €.
Determinacy. If - Fe:7and e — e; and e — ey then e; = ea.

Canonical Forms. Assume - - e : 7 and e value.

(1) If 7 = 7 — 75 then e = Az. e5 for some eo
(ii) If 7 = Va. 7’ then e = Aa. € for some ¢’
(iii) If 7 = 71 X 1o then e = (e, e2) for some e; value and es value
(iv) If = 1 thene = ()
(v) If 7 =3,c;(i:7;) thene = k - ¢, for some k € I and ey, value.

(vi) If 7 = po. 7/ then e = fold €’ for some €’ value



Contexts I

T ctx [ctx I'k 7 type
ctx/emp ——— ctx/tpvar ctx/var
(+) ctx (T, v type) ctx (Dyx:7) ctx
Functions 1, —
I'=7 type T F 1 type
tp/arrow
I'= 711 — m type
F|—7'1f]/P€ Fzi:mber:m z:7el I'Fet:m—1 T'key:my
tp/lam  ————— tp/var tp/app
' Axiimp.ea:m — 1 I'ta:7 I'Feley:m
N ez value Japp)|
val/lam step/app/lam
Az. e value (Ax.e1)e2 — [ea/x]e;
e1 — €] ey value e — €
— step/app, —— step/app,
€1 e e e €1 €2 > €1 €9
Polymorphic Types Vo. 7
atype € I’ I, a type = 1 type
—— tp/tpvar tp/forall
I' = o type I' = Vo. 1 type
Iatypee: T I'-e:Va.7r T'F o type /
tp/tplam tp/tpapp
'k Aa.e:Va.r P/t Fkelo]:[o/alr
— /
val/tplam step/tpapp/tplam cme

Aa. e value

(Aa.e) [T] — [T/ale

elr]—é|[r

] step/tpapp




Pairs 7 x 7

I'-7 type T'F 1 type

tp/prod
I'= 71 x 1 type P/
I'tFer:mm TPhey:m _ F'te:mxm Doy :m,zo:mbe 7
tp/pair tp/casep
Ik (e1,e3) : 11 X T2 I'kcasee ({(x1,29) =€) : 7'
e1 value ey value ) vy value vy value )
val /pair step/casep/pair
<61, 62) value case <?)1,?}2> (<$1,l’2> = 63) — [1)1/.731”1)2/1‘2]63
e €} v1 value ey — €,
p step/pair, - step/pair,
<61) 62> = <61) 62> <'U]_, 62> = <Ul) 62>

ey — €

- step/casep,
case ey ((z1,22) = e3) — case e ({(z1,x2) = e3)

Unit 1

I'kFe:1 THe:7

—  tp/one —— tp/unit tp/caseu
'+ 1 type P/ I'():1 / I'tcasee (()=¢€): 7
val/unit step/caseu/unit
() value case () (() = e)—e
ep > €

p step/caseu,,
caseeg (() = e1) —casee; (() = e1)

10



Sums . ,(i:7;)

't 7 type (foralli e I)
I 2 ier (i i) type

tp/sum

(kel) They:m I'E) . 0i:7)type
Fl—k‘-ek : Eie[(i:n)

Fke:> e i) Taj:mibe o (foralliel)

tp/tag

tp/cases
IPtkcasee (i-x; = €)icr: 0
e value vy, value
—  val/tag step/cases/tag
k - e value case k - v (’L - T = 62')1‘6] — [’Uk;/.’lik]ek
e1 €} ep — €
——— step/tag step/cases,,
k-ei—k-é) case eg (i-x; = €;)icr > case e}y (i - x; = €;)ier
Recursive Types po. 7
I, o type = T type
tp/mu
I' = po. T type
I'kFe:|pua.7/alT I'kFe:pa.t
[ fel tp/fold tp/unfold
'k fold e: pa. I' - unfold e : [pa. T/a]T
l !
_comue val /fold v oate step/unfold /fold
fold e value unfold (fold v) — v
/ /
_cze step/fold e step/unfold,,
fold e — fold €’ unfold e — unfold €’
Recursion
If:7Fe:r . _
. tp/fix . . step/fix
I'Hfix firoe: T fix f.e — [fix f.e/fle
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