Midterm Exam

15-814 Types and Programming Languages
Frank Pfenning

October 17, 2019

Name: Sample Solution Andrew ID: fp

Instructions

e This exam is closed-book, closed-notes.
¢ You have 80 minutes to complete the exam.
e There are 4 problems.

e For reference, on pages 9-11 there is an appendix with sections on the syntax, statics, and
dynamics.

Type Fork/Join Small-Step

A-Calculus Isomorphisms Parallelism Determinacy

Prob1 | Prob2 | Prob3 | Prob4 | Total

Score 40 30 50 30 150

Max 40 30 50 30 150




1 A-Calculus (40 pts)
Recall the definition of Church numerals in the A-calculus:

n=2As.Az. s(s...(s 2))
—_————
n times

Task 1 (20 pts). Fill in the missing definitions. You may use any definition in all subsequent
answers, including function composition in infix notation (f o g).

zero =3 0

zero = As.A\z.z

succn =3 n+1

succ = An.As. Az s (nsz)

compose f g function composition, usually written in infix notation as f o g
compose = Af.Ag Az, f(gx)

double m =3 2n

double = An.n (succ o succ) zero

mysterym =g "

mystery = An.n double (succ zero)



Next, we consider a Church-style representation of numbers in base 2, defined with
(an - -a1ag)2 = ap2" + ...a12' + a2’
where each a; is either 0 or 1. We then define 0=0b0and I = bl and
“(an -+ -arag)2” = Ab1.Ab0. Ne.@g (@7 ... (an€))

For example, 767 = "(110)2" = Abl.Ab0. Xe. b0 (b1 (ble)). As a special case, we represent the
number 0 as shown below with zero binary digits.

Task 2 (20 pts). Complete the following definitions, where you may use any definitions in subse-
quent answers, including all the definitions from Task 1.

bzero =3 0"

bzero = AbL.AbO. Xe.e

btwo =g "27="(10)2"

btwo = Ab1.AD0. Ae. b0 (bl e)
bdouble"x7 =5 "2z

bdouble = Az. AbL. Ab0. Ae. b0 (z b1 b0 €)
bin2nat "z =5 T

bin2nat = Ax. x (succ o double) double zero
bmystery "z =4 true if x is even, false otherwise
bmystery = Az.z (\y.false) (Az. true) true



2 Type Isomorphism (30 pts)

Recall that two types 7 and ¢ are isomorphic if we can supply a pair of functions Forth : 7 — o
and Back : o — 7 such that Back o Forth and Forth o Back are both equal to the identity function.
As in lectures and homework assignments, we take here an extensional point of view, that is, two
functions are equal if applied to an arbitrary value v of the correct type they yield equal results.

We define
2 = (zero:1)+ (one:1)
bin = pa.(E:1)+ (Bl:a)+ (BO: )

Task 1 (30 pts). Define functions Forth and Back witnessing the isomorphism of 2 x bin + 1 = bin,
using the following labels:
(1ft : 2 x bin) + (rgt : 1) = bin

You may use general pattern matching in your definition. You do not need to prove that the
functions form an isomorphism.

Forth : (1ft:2 X bin)+ (rgt: 1) — bin

Forth = M\s.case s (1ft - (zero- (), z) = fold (BO - x)
| 1ft - (one - (), x) = fold (B1 - x)
| rgt - () = fold (E- ()))

Back : bin— (1ft:2 x bin) + (rgt : 1)

Back = MAz.casex (fold (E-()) = rgt- ()
| fold (BO - y) = 1ft - (zero- (),y)
| fold (B1-y) = 1ft - (one- (),y))



3 Fork/Join Parallelism (50 pts)

Fork/join parallelism is the idea that we can fork the parallel evaluation of two expression and
then join these two threads when they have both finished.

We model this with a parallel pair 71 © 5. The new expressions are (e; || e2) to construct a
parallel pair and case e ({21 || x2) = ¢’) to decompose it.

The typing rules are not very interesting, because they work exactly like the typing of con-
structors and destructors of ordinary eager pairs. So we do not write them out.

Regarding the dynamics, here are several examples to illustrate the desired behavior. We write
v for expressions with v val and L = fix f. f.

(e || L) does not have a value
(L] e2) does not have a value
(v1 || vo) is a value

(Arz)vr || Az Ay.2)vavg) 2 (vg || va)

When writing down the dynamics, make sure that preservation and progress continue to hold.

Task 1 (5 pts). Give the rule(s) for the e val judgment for the new expressions.

e1val eq val

val/ppair
<61 || €2> val

Task 2 (20 pts). Give the rules for the e — ¢’ judgment for the new expressions.

e1— €] eg > el

step/ppair,,
(e1 || e2) > (€] [ €3)

e1 — ey vy val vy val  eg > € .
; step/ppair, p step/ppair,
(e1 [[ v2) = (e} [l va) (v [l e2) = (v1 || €5)

e > €

step/case/ppair,,
case eg ((z1 || z2) = e3) > case ;) ((z1 || x2) = e3)

v1 val v val

case (v1 || v2) ((w1 || w2) = e3) = [v1/m1][v2/22]es step/case/ppair




Task 3 (20 pts). Fill in the gaps in the statement and one case in the proof of preservation.

Theorem (Preservation)

If-Fe:7and e—eée |then| -Feée:7

Proof. By rule induction on the derivation of e — €’

Case: In the rule where two expressions step in parallel, we have

e1 €] e el

step/ppair,
(e1 ]| e2) = (€] || €3)

with e = (e1 || e2) and ¢’ = (€] || €}). Then

‘Fei ] e): T Assumption
‘Fei:mand -F ey : mand T = 1 ©  for some 71 and 7 By inversion
keim By ind. hyp.
ke T By ind. hyp.
e e):m O By rule

Task 4 (5 pts). Complete the statement of the progress theorem and the global structure of the
proof. You do not need to show any cases.

Theorem (Progress)

If| -Fe:7 |then either e — € for some e or e val.

Proof. By rule induction on the derivationof - e : 7




4 Small-Step Determinacy (30 pts)

As noted during the midterm review session, in the proof that our language from the appendix
satisfies small-step determinacy we may need the following two lemmas. We write e i/ if there is
no ¢’ such thate — ¢’

Task 1 (5 pts).

Lemma A If - - e: 7 and e val then e /.
Circle one: This lemma follows directly from the progress theorem.

YES / [NO

If your answer is NO: the statement can be proved by|  rule induction on the derivation of e val

Task 2 (5 pts).

LemmaBIf -+ e: 7and e 4 then e val.
Circle one: This lemma follows directly from the progress theorem.

YES / NO

If your answer is NO: the statement can be proved by does not apply




Task 3 (15 pts). Complete the following portion of the proof of small-step determinacy.

Theorem (Small-Step Determinacy). If - - e: 7and e — ¢’ and e +— €” then e’ = €”.
Proof: By rule induction on the derivation of e — ¢’

Case:

e ¢}

step/pair,
(e1,e2) = (€], ea)

where e = (e1,e2) and ¢’ = (€], e2).

-+ e1 : 71 for some 1 By inversionon - - (ej,ez) : T

"

We then apply inversion on (e1,e2) — e

and obtain two subcase(s).

State and complete each subcase below.

First subcase: (ej, e2) — (e, e2) by rule step/pair, and e; — €. Then ¢} = €/ by induc-
tion hypothesis and therefore ¢’ = (e, ea) = (€], e2) = €”

Second subcase: (e1,e2) — (€1, €)) where e; val by rule step/pair,. But this is impossible
by Lemma A above since e; — €.

Task 4 (5 pts). Does your set of rules in Problem 3 on fork/join parallelism satisfy small-step
determinacy? Circle one:

YES / NO




Appendix: Language Reference

Language
Types T o= a|ln—=n|nxnll| Y 0m) | paT
Expressions e = x
| Az.e|eren
| (e1,e2) | case e ({x1,x2) =€)
| () [casee ({) =€)
| j-el|casee (i-x; = €)icr
|  fold e | unfold e
| f|fixf.e
Contexts ' == zy:7,...,25: 7 (all z; distinct)
Statics and Dynamics
Functions.
iz :mber:m z:17€el
lam — var
I'EAxi.eq:11 =1 'tax:7
I'kFei:m—1 Ihex:m
app
'+ €162 :T1
val/lam
Ax. e val
e1 €} vy val ey €l
—————— step/app; — step/app,
€1 €2 — €1 €3 V1 €2 F V1 €y
vg val :
eta
(Ax.e1) vy — [ve/x]er
Products.
F|—€1:7'1 Fl—egiTQ X
pair

L'k (e1,e2) : 71 X T2

I'Fe:mixm Dyaxy:m,ze:mbe 7

case/pair
I'Fcasee ((x1,22) =€) : 7

(
(
(
(
(
(
(

variables)

p)
recursion)



e1 val eq val

val/pair
<€1, €2> val
e1 — €} ey val ey €l
- step/pair, step/pair,
(e1,e2) — (€}, e2) (e1,e2) — (e1,€h)
ey — €

- step/case/pair,,
case ey ((x1,z2) = e3) > case e ((z1,x2) = €3)

v1 val v val

case (v1,v2) ((z1,22) = e3) > [v1/x1][ve/z2]es step/case/pair

Unit.

Ftey:1 ThHe:7 _
——— unit case/unit
F'E():1 IlkFcaseey (() =€) : 7

val/unit
) val

ep — €

step/case/unit
case e (() = e1) —> case e, ({) = e1) 0

case () () = o) o e ooP/ose/unt

Sums.
jel T'ke:T; F'keg:) jeplicm) Daj:imbe 7 foralliel

sum case/sum
FFj-e:EieI(i:Ti) FFcaseeo(i-xiéei)iGI:T

e val

val/sum
j-ewval

e e
step/sum

jrer g€

ep — €,

step/case/sum
case € (’L - T = €i)i€[ > case 66 (Z cXT; = ei)iej 0

v val

_ . step/case/sum
case (j - v) (i -z = €;)icr — [v/x5]e;

10



Recursive Types.

I'ke:[pa.7/alT F'ke:pa.t
fold unfold
I'Ffolde: pa.T 'k unfold e : [pa. T/a]T
e val
val /fold
fold e val
/
_eme step/fold
fold e — fold ¢’
/
c—e step/unfold,, v vl step/unfold
unfold e — unfold ¢’ unfold (fold v) — v

Fixed Point Expressions.

F,f:Tl_ein.
IF'Hfix fie: 7 .

f'
fix f.e— [fix f.e/fle step/fix
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