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This assignment is due on the above date and it must be submitted electronically on Grade-
scope. Please use the attached template to typeset your assignment and make sure to include your
full name and Andrew ID. For the written problems, you may also submit handwritten answers
that have been scanned and are easily legible.

Please carefully read the policies on collaboration and credit on the course web pages at http:
//www.cs.cmu.edu/˜fp/courses/15814-f25/assignments.html.

You should hand in two files separately:

• hw04.pdf with the written answers to the questions.

• hw04.cbv with the code, where the solutions to the problems are clearly marked and auxil-
iary code (either from lecture or your own) is included so it passes the LAMBDA checker.

1 Isomorphism Witnesses

Task 1 (20 pts) Exhibit the functions Forth and Back witnessing the following isomorphisms. You
do not need to prove that they constitute an ismorphism, just show the functions. We remain here
in the pure language of where every function is terminating.

(i) τ × (σ + ρ) ∼= (τ × σ) + (τ × ρ)

(ii) 2→ τ ∼= τ × τ

(iii) 1→ τ ∼= τ

(iv) 0→ τ ∼= 1

(v) (σ + ρ)→ τ ∼= (σ → τ)× (ρ→ τ)

Include the appropriately polymorphic functions in your file hw04.cbv. For example, in the
implementation of part (iii) your functions should have type forth iii : ∀α. (1→α)→α and back ii :
∀α. α→ (1→ α).
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See file hw04soln.cbv

Task 2 (20 pts) Verify that the composition Forth ◦ Back ≈ λg. g where Forth and Back coerce from
a curried function to its tupled counterpart.

Forth : ((τ × σ)→ ρ)→ (τ → (σ → ρ))
Forth = λf. λx. λy. f ⟨x, y⟩

Back : (τ → (σ → ρ))→ ((τ × σ)→ ρ)
Back = λg. λp. case p (⟨x, y⟩ ⇒ g x y)

Forth o Back
=?=
\g. g : (t -> s -> r) -> (t -> s -> r)
(* by extensionality, it is sufficient to check the result

* of applying both sides to arbitrary value f : t -> s -> r

*)
(Forth o Back)(f)
= Forth(Back(f))
= Forth(\p. case p of ((x, y) => f x y))
= \x. \y. (\p. case p of ((x, y) => f x y)) (x, y)
=?= f : t -> s -> r
(* by extensionality, it is sufficient to check the

* result of apply both sides to arbitrary v : t and w : s

*)
(\x. \y. (\p. case p of ((x, y) => f x y)) (x, y)) v w
= (\p. case p of ((x, y) => f x y)) (v, w)
= case (v, w) of ((x, y) => f x y)
= f v w
=?=
f v w : r
(* and extensional equality has been verified *)

2 Recursive Types

Balanced ternary numbers are a representation of integers with some remarkable properties. This
representation has three digits with values -1, 0, and 1. It represents any integer uniquely (assum-
ing no leading 0s) and has some nice symmetry properties. For example, a number is negated
just be negating every digit. An early computer built in Moscow in 1958 actually used balanced
ternary numbers and ternary logic, instead of the binary system we are now used to. For example,
the Wikipedia article on Balanced Ternary provides an introduction and more details.

In this problem, we ask you to implement ternary numbers and some simple operations on
that representation.

Task 3 (30 pts) Implement the following types and functions in your hw04.cbv file.
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type tern = ...

decl zero : tern % 0
decl plus1 : tern % 1
decl minus1 : tern % -1
decl inc : tern -> tern % increment
decl dec : tern -> tern % decrement
decl neg : tern -> tern % negate
decl plus : tern -> tern -> tern % addition

type sign = (’neg : 1) + (’zero : 1) + (’pos : 1)
decl sign_of : tern -> sign

You may define other types, functions, and predicates as you see fit. Efficiency should not be a
significant consideration. Because we would like to represent integers of arbitrary size, we recom-
mend a representation as a sequence of digits, with the least significant bit coming first (known as
“little endian”). Your representation may allow leading 0 digits, which would be “trailing” if you
choose the recommended representation.

Also provide a few test cases for each function.

See hw04soln.cbv
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