
Assignment 3
Dynamics

Sample Solution

15-814: Types and Programming Languages
Frank Pfenning

Due Tue Sep 23, 2025
80 pts

This assignment is due on the above date and it must be submitted electronically on Grade-
scope. Please use the attached template to typeset your assignment and make sure to include your
full name and Andrew ID. For the written problems, you may also submit handwritten answers
that have been scanned and are easily legible.

Please carefully read the policies on collaboration and credit on the course web pages at http:
//www.cs.cmu.edu/˜fp/courses/15814-f25/assignments.html.

You should hand in two files separately:

• hw03.pdf with the written answers to the questions.

• hw03.poly with the code, where the solutions to the problems are clearly marked and
auxiliary code (either from lecture or your own) is included so it passes the LAMBDA checker.

As always, in your proofs you may use the theorems in the lecture notes.

1 Sequentiality

Task 1 (10 pts) Prove sequentiality: If · ⊢ e : τ , e 7→ e′ and e 7→ e′′ then e′ = e′′. You only need
to show the cases pertaining to functions in our call-by-value language. For equality, you should
assume α-conversion, that is, equality modulo the name of bound variables.

Proof: By rule induction on the first given derivation and inversion on typing. In each case the
rule for reduction e 7→ _ is uniquely determined by finality of values and the result follows by
induction hypothesis (or directly in the case of β).

Case:
e1 7→ e′1

e1 e2 7→ e′1 e2
step/app1

The only other rules for e1 e2 require e1 value, which is impossible by finality of values.
If e1 7→ e′′1 then, by induction hypothesis, e′1 = e′′1 and so e′1 e2 = e′′1 e2.

ASSIGNMENT 3 DUE TUE SEP 23, 2025
80 PTS

http://www.cs.cmu.edu/~fp/courses/15814-f25/assignments.html
http://www.cs.cmu.edu/~fp/courses/15814-f25/assignments.html
http://www.cs.cmu.edu/~fp/courses/15814-f25/assignments.html

Dynamics
Sample Solution HW3.2

Case:
e1 value e2 7→ e′2

e1 e2 7→ e1 e
′
2

step/app2

The only other rules for e1 e2 require e1 7→ e′1 or e2 value. These are both impossible by
finality of values. Therefore the only applicable rule for e1 e2 in this case is step/app2. If
e2 7→ e′′2 then e′2 = e′′2 by induction hypothesis, so e1 e

′
2 = e1 e

′′
2 .

Case:
e2 value

(λx. e3) e2 7→ [e2/x]e3
β

The only other rules for e1 = (λx. e3) 7→ e′1 or e2 7→ e′2. These are both impossible by
finality of values and λx. e3 value. Therefore the only applicable rule for (λx. e3) e2 is β
and the redux [e2/x]e3 is the same in both rules.

2 Lazy Pairs

Task 2 (30 pts) Lazy pairs, constructed as ⟨|e1, e2|⟩, are an alternative to the eager pairs ⟨e1, e2⟩. Lazy
pairs are typically available in “lazy” languages such as Haskell. The key differences are that a
lazy pair ⟨|e1, e2|⟩ is always a value, whether its components are or not. In that way, it is like a
λ-expression, since λx. e is always a value. The second difference is that its destructors are fst e
and snd e rather than a new form of case expression.

We write the type of lazy pairs as τ1 N τ2. In this task you are asked to design the rules for lazy
pairs and check their correctness.

1. Write out the new rule(s) for e val.

2. State the typing rules for new expressions ⟨|e1, e2|⟩, fst e, and snd e.

3. Give evaluation rules for the new forms of expressions.

Instead of giving the complete set of new proof cases for the additional constructs, we only ask you
to explicate a few items. Nevertheless, you need to make sure that the progress and preservation
continue to hold.

4. State the new clause in the canonical forms theorem.

5. Show one case in the proof of the preservation theorem where a destructor is applied to a
constructor.

6. Show the case in the proof of the progress theorem analyzing the typing rule for fst e.

1.

⟨|e1, e2|⟩ value
val/lpair

ASSIGNMENT 3 DUE TUE SEP 23, 2025
80 PTS

Dynamics
Sample Solution HW3.3

2.

Γ ⊢ e1 : τ Γ ⊢ e2 : σ

Γ ⊢ ⟨|e1, e2|⟩ : τ N σ
tp/lpair

Γ ⊢ e : τ N σ

Γ ⊢ fst e : τ
tp/fst

Γ ⊢ e : τ N σ

Γ ⊢ snd e : σ
tp/snd

3.

fst ⟨|e1, e2|⟩ 7→ e1
step/fst/lpair

snd ⟨|e1, e2|⟩ 7→ e2
step/snd/lpair

e 7→ e′

fst e 7→ fst e′
step/fst

e 7→ e′

snd e 7→ snd e′
step/snd

4. If · ⊢ e : τ N σ and e value then e = ⟨|e1, e2|⟩ for some e1, e2.

5. Suppose step/fst/lpair derived e1 7→ e2, so that e1 = fst ⟨|e2, e3|⟩. Given that · ⊢ e1 : τ , we
want to show that · ⊢ e2 : τ .

· ⊢ e1 : τ assumed
· ⊢ fst ⟨|e2, e3|⟩ : τ equal substitution

· ⊢ ⟨|e2, e3|⟩ : τ N σ for some σ tp/fst inversion
· ⊢ e2 : τ tp/lpair inversion

6. Given that · ⊢ fst e : τ , we want to show either fst e value or fst e 7→ e′ for some e′.

· ⊢ fst e : τ assumed
· ⊢ e : τ N σ for some σ tp/fst inversion

e value or e 7→ e′′ induction hypothesis

We now case over wether e value or e 7→ e′′. In either case we will find that fst e steps.

• Suppose e value.

e value assumed
e = ⟨|e1, e2|⟩ for some e1, e2 canonical forms

fst ⟨|e1, e2|⟩ 7→ e1 rule step/fst/lpair

fst e 7→ e1 equal substitution

• Suppose e 7→ e′′.

e 7→ e′′ assumed
fst e 7→ fst e′′ rule step/fst

ASSIGNMENT 3 DUE TUE SEP 23, 2025
80 PTS

Dynamics
Sample Solution HW3.4

3 Nontermination

Task 3 (30 pts) Consider adding a new expression ⊥ to our call-by-value language (with functions
and Booleans) with the following evaluation and typing rules:

⊥ 7→ ⊥
step/bot

Γ ⊢ ⊥ : τ
bot

We do not change our notion of value, that is, ⊥ is not a value.

1. Does preservation (Theorem L6.2) still hold? If not, provide a counterexample. If yes, show
how the proof has to be modified to account for the new form of expression.

2. Does the canonical forms theorem (L6.4) still hold? If not, provide a counterexample. If yes,
show how the proof has to be modified to account for the new form of expression.

3. Does progress (Theorem L6.3) still hold? If not, provide a counterexample. If yes, show how
the proof has to be modified to account for the new form of expression.

Once we have nonterminating computation, we sometimes compare expressions using Kleene
equality: e1 and e2 are Kleene equal (e1 ≃ e2) if they evaluate to the same value, or they both
diverge (do not compute to a value). Since we assume we cannot observe functions, we can fur-
ther restrict this definition: For · ⊢ e1 : bool and · ⊢ e2 : bool we write e1 ≃ e2 iff for all values v,
e1 7→∗ v iff e2 7→∗ v.

4. Give an example of two closed terms e1 and e2 of type bool such that e1 ≃ e2 but not e1 =β e2,
or indicate that no such example exists (no proof needed in either case).

1. Yes, preservation still holds. There is a single new case for ⊥, but since ⊥ has every type,
that is preserved as part of reduction.

2. Yes, the canonical form theorem still holds. That’s because ⊥ is not a value.

3. Yes, the progress theorem still holds. There is a single new case for ⊥, but that reduces
(and it is not a value).

4. e1 = ⊥ () and e2 = ⊥. They both diverge but are not β-equal. In e1 we assign ⊥ : 1→bool
and in e1 we assign ⊥ : bool.

Task 4 (10 pts) In our call-by-value language with functions, Booleans, and ⊥ (see Task 3) con-
sider the following specification of or, sometimes called “short-circuit or”:

or true e ≃ true
or false e ≃ e

where e1 ≃ e2 is Kleene equality from Task 3.

1. We cannot define a function or : bool→(bool→bool) with this behavior. Prove that it is indeed
impossible.

ASSIGNMENT 3 DUE TUE SEP 23, 2025
80 PTS

Dynamics
Sample Solution HW3.5

2. Show how to translate an expression or e1 e2 into our language so that it satisfies the spec-
ification, and verify the given equalities by calculation. By “translation” we mean to find
an suitable existing expression in the language with primitive Booleans and conditionals,
presumably using e1 and e2.

1. For e = ⊥, the first equation can not be true in a call-by-value language because the
right-hand side is a value and the left-hand side does not have a value.

2. or e1 e2 ≜ if e1 true e2. In the language with sums where bool = (true : 1) + (false : 1).
this can be represented as case e1 (true(u) ⇒ true(u) | false(u) ⇒ e2) for some u ̸∈
FV(e2).

ASSIGNMENT 3 DUE TUE SEP 23, 2025
80 PTS

	Sequentiality
	Lazy Pairs
	Nontermination

