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This assignment is due on the above date and it must be submitted electronically on Grade-
scope. Please use the attached template to typeset your assignment and make sure to include your
full name and Andrew ID. For the written problems, you may also submit handwritten answers
that have been scanned and are easily legible.

Please carefully read the policies on collaboration and credit on the course web pages at http:
//www.cs.cmu.edu/˜fp/courses/15814-f25/assignments.html.

You should hand in two files separately:

• hw02.pdf with the written answers to the questions.

• hw02.poly with the code, where the solutions to the problems are clearly marked and
auxiliary code (either from lecture or your own) is included so it passes the LAMBDA checker.

1 Polymorphic Typing

Task 1 (10 pts) Fill in the blanks in the following judgments so that it holds, or indicate there is no
way to do so. You do not need to justify your answer or supply a typing derivation, and the types
do not need to be “most general” in any sense. As always, feel free to use LAMBDA to check your
answers.

(i) β type ⊢ ∀α. α → β type

(ii) η type, x : ∀γ. η → ∀δ. δ, y : η, β type ⊢ Λα. x [α → α] y [β] : ∀α. β

(iii) · ⊢ λx. x [ u ]xx : u → u where u = ∀α. α → α → α

(iv) α type ⊢ not possible : ∀β. α → β

(v) x : ∀α. (∀β. β → β) → α, γ type ⊢ λy. x [γ] (Λβ.λz. z) : (γ → γ) → γ
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2 Representing Data and Functions

Task 2 (10 pts)

(i) Find a definition of plus : nat → nat → nat that works in the simply-typed λ-calculus in the
sense that we need to instantiate the type ∀α. (α→ α)→ α→ α only with a type variable.

(ii) Give a simply-typed definition (in the sense of part (i)) for times or conjecture that none exists.

Your answer(s) should be included in the file hw02.poly.

See hw02soln.poly

Task 3 (35 pts) In this exercise we explore the representation of natural numbers in binary form
(type bin). We can think of them as being generated from the constructors

b0 : bin → bin bit 0
b1 : bin → bin bit 1
e : bin empty bit string

where the least significant bit comes first (“little endian”). We write (n)2 for the representation of
n in base 2. Here are some examples:

(0)2 = e

(1)2 = b1 e

(2)2 = b0 (b1 e)

(6)2 = b0 (b1 (b1 e))

To obtain the representation in the untyped λ-calculus we abstract over all the constructors, so, for
example

(6)2 = λb0. λb1. λe. b0 (b1 (b1 e))

(i) Give an analogue of the schema of iteration. It should have three clauses, one for each of the
constructors.

f(e) = c
f(b0 x) = g0 (f(x))
f(b1 x) = g1 (f(x))

(ii) Give a representation of bin as a closed type in the polymorphic lambda-calculus.

bin = ∀α. α→ (α→ α)→ (α→ α)→ α
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(iii) Give well-typed representations of the constructor functions

b0 : bin → bin (b0 (n)2 = (2n)2)

b1 : bin → bin (b1 (n)2 = (2n+ 1)2)

e : bin (e = (0)2)

See hw02soln.poly

(iv) Give a well-typed representation of

inc : bin → bin (inc (n)2 = (n+ 1)2)

See hw02soln.poly

(v) Provide several tests cases for the increment function.

See hw02soln.poly

Include the answers to parts (ii)–(v) in the file hw02.poly.

3 Typing Self-Application

Task 4 (25 pts) We write F for a (mathematical) function from types to types (which is not ex-
pressible in the polymorphic λ-calculus but requires system Fω). A more general family of types
(one for each F ) for self-application is given by

uF = ∀α. α→ F (α)

ωF : uF → F (uF )
ωF = λx. x [uF ] x

We recover the type from this lecture with F = Λα. α. You may want to verify the general typing
derivation in preparation for the following questions, but you do not need to show it.

(i) Consider F = Λα. α → α. In this case uF = bool. Calculate the type and characterize the
behavior of ωF as a function on Booleans.

(ii) Consider F = Λα. (α→α)→α. Calculate uF , the type of ωF , and characterize the the behavior
of ωF . Can you relate uF and ωF to the types and functions we have considered in the course
so far?

(i) Here uF = ∀α. α → α → α, which as expected is the type of Booleans. The type of ωF is
then uF → uF → uF = (∀α. α → α → α) → (∀α. α → α → α) → (∀α. α → α → α)
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• ωF true = λx. true = or true

• ωF false = λx. x = or false

So ωF is like or on Booleans (where or is the logical disjunction for Booleans,
λx. λy. x [bool] true y).

(ii) Here uF = ∀α.α → (α → α) → α, which is essentially the type of nat, except with its two
arguments swapped in order. The type of ωF is then uF → (uF → uF ) → uF = (∀α.α →
(α → α) → α) → ((∀α.α → (α → α) → α) → (∀α.α → (α → α) → α)) → (∀α.α → (α →
α) → α).

We write n below to mean this new natural number representation, Λα. λz. λs. sn z.

• ωF 0 = λs. 0

• ωF 1 = λs. s 1

• ωF 2 = λs. s s 2

• ωF n = λs. sn n

So applying ωF to n yields a function which takes a function s over these new naturals,
and n times applies s to n.

See hw02soln.poly for the implementations.
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