Assignment 1 The Untyped λ -Calculus Sample Solution

15-814: Types and Programming Languages Frank Pfenning

Due Tue Sep 9, 2025 80 pts

This assignment is due on the above date and it must be submitted electronically on Grade-scope. Please use the attached template to typeset your assignment and make sure to include your full name and Andrew ID. For the written problems, you may also submit handwritten answers that have been scanned and are **easily legible**.

Please carefully read the policies on collaboration and credit on the course web pages at http://www.cs.cmu.edu/~fp/courses/15814-f25/assignments.html.

You should hand in two files separately:

- hw01.pdf with the written answers to the questions.
- hw01.lam with the code, where the solutions to the problems are clearly marked and auxiliary code (either from lecture or your own) is included so it passes the LAMBDA checker.

1 Calculating in the λ -Calculus

Task 1 (5 pts) Define the following functions on Booleans.

- 1. The "nor" operator, which yields true iff both inputs are false.
- 2. The conditional "if" such that

if true
$$e_1 e_2 =_{\beta} e_1$$

if false $e_1 e_2 =_{\beta} e_2$

3. In the solution file hw01.lam include the necessary definitions of *nor* and *if* and also sufficient test cases to certify their correctness.

See hw01soln.lam

Task 2 (15 pts) One approach to representing functions defined by the schema of primitive recursion is to change the representation so that \overline{n} is not an iterator but a *primitive recursor*.

$$\begin{array}{lll} \overline{0} & = & \lambda s.\,\lambda z.\,z \\ \overline{n+1} & = & \lambda s.\,\lambda z.\,s\,\overline{n}\,(\overline{n}\,s\,z) \end{array}$$

- 1. Define the successor function *succ* on this new representation (if possible) and show its correctness.
- 2. Define the predecessor function *pred* on this new representation (if possible) and show its correctness.
- 3. Explore if it is possible to directly represent any function f specified by a schema of primitive recursion, ideally without constructing and destructing pairs. Write what you find.
 - 1. $succ = \lambda n. \lambda s. \lambda z. s n (n s z)$

To show this definition correct, we apply it to \overline{n} to find it yields $\overline{n+1}$.

$$succ \, \overline{n} = (\lambda n. \, \lambda s. \, \lambda z. \, s \, n \, (n \, s \, z)) \, \overline{n}$$
 def
= $\lambda s. \, \lambda z. \, s \, \overline{n} \, (\overline{n} \, s \, z)$ β
= $\overline{n+1}$ def

2. $pred = \lambda n. n (\lambda x. \lambda y. x) \overline{0}$

To show this definition correct, we apply it to $\overline{0}$ to get $\overline{0}$, and apply it to $\overline{n+1}$ to get \overline{n} .

$$\begin{array}{ll} \operatorname{pred} \overline{0} = (\lambda n. \, n \, (\lambda x. \, \lambda y. \, x) \, \overline{0}) \, \overline{0} & \text{def} \\ = \overline{0} \, (\lambda x. \, \lambda y. \, x) \, \overline{0} & \beta \\ = (\lambda a. \, \lambda b. \, b) \, (\lambda x. \, \lambda y. \, x) \, \overline{0} & \text{def} \\ = (\lambda b. \, b) \, \overline{0} & \beta \\ = \overline{0} & \beta \end{array}$$

$$\begin{aligned} \operatorname{pred} \overline{n+1} &= (\lambda n. \, n \, (\lambda x. \, \lambda y. \, x) \, \overline{0}) \, (\lambda s. \, \lambda z. \, s \, \overline{n} \, (\overline{n} \, s \, z)) \\ &= (\lambda s. \, \lambda z. \, s \, \overline{n} \, (\overline{n} \, s \, z)) \, (\lambda x. \, \lambda y. \, x) \, \overline{0} \\ &= (\lambda z. \, (\lambda x. \, \lambda y. \, x) \, \overline{n} \, (\overline{n} \, (\lambda x. \, \lambda y. \, x) \, z)) \, \overline{0} \\ &= (\lambda x. \, \lambda y. \, x) \, \overline{n} \, (\overline{n} \, (\lambda x. \, \lambda y. \, x) \, \overline{0}) \\ &= (\lambda y. \, \overline{n}) \, (\overline{n} \, (\lambda x. \, \lambda y. \, x) \, \overline{0}) \\ &= \overline{n} \end{aligned}$$

$$\beta$$

3. This representation can indeed be used to directly create lambda terms for functions definable by the schema of primitive recursion. Suppose one defines *f* through defining *c* and *g* in the primitive recursion schema below:

$$f 0 = c$$
 $f(n+1) = g n (f n)$

Then, given lambda terms \overline{c} for c, and \overline{g} for g, one can create a lambda term \overline{f} for f simply with:

$$\overline{f}=\lambda n.\, n\, \overline{g}\, \overline{c}$$

This can be shown correct by checking that the two equations of the primitive recursive schema hold for \overline{f} , \overline{g} , and \overline{c} when applied with our new numerical representation.

$$\overline{f} \, \overline{0} = (\lambda n. \, n \, \overline{g} \, \overline{c}) \, \overline{0}$$
 def

$$= \overline{0} \, \overline{g} \, \overline{c}$$
 β

$$= (\lambda s. \, \lambda z. \, z) \, \overline{g} \, \overline{c}$$
 def

$$= (\lambda z. \, z) \, \overline{c}$$
 β

$$= \overline{c}$$
 β

$$\begin{split} \overline{f}\,\overline{n+1} &= (\lambda n.\, n\, \overline{g}\, \overline{c})\, \overline{n+1} & \text{def} \\ &= \overline{n+1}\, \overline{g}\, \overline{c} & \beta \\ &= (\lambda s.\, \lambda z.\, s\, \overline{n}\, (\overline{n}\, s\, z))\, \overline{g}\, \overline{c} & \text{def} \\ &= (\lambda z.\, \overline{g}\, \overline{n}\, (\overline{n}\, \overline{g}\, z))\, \overline{c} & \beta \\ &= \overline{g}\, \overline{n}\, (\overline{n}\, \overline{g}\, \overline{c}) & \beta \\ &= \overline{g}\, \overline{n}\, ((\lambda n.\, n\overline{g}\, \overline{c})\, \overline{n}) & \beta \\ &= \overline{g}\, \overline{n}\, (\overline{f}\, \overline{n}) & \text{def} \end{split}$$

Task 3 (10 pts) The unary representation of natural numbers requires tedious and error-prone counting to check whether your functions (such as the Lucas function in the exercise below) behave correctly on some inputs with large answers. Fortunately, you can exploit that the LAMBDA implementation counts the number or reduction steps for you and prints it in decimal form!

(i) We have

$$\overline{n}$$
 succ zero $\longrightarrow_{\beta}^{*} \overline{n}$

because \overline{n} iterates the successor function n times on 0. Run some experiments in LAMBDA and conjecture how many leftmost-outermost reduction steps are required as a function of n. Note that only β -reductions are counted, and *not* replacing a definition (for example, *zero* by $\lambda s. \lambda z. z$). We justify this because we think of the definitions as taking place at the metalevel, in our mathematical domain of discourse.

(ii) Prove your conjecture from part (i), using induction on n. It may be helpful to use the mathematical notation f^kc to describe a λ -expression generated by $f^0c=c$ and $f^{k+1}c=f(f^kc)$ where f and c are λ -expressions. For example, $\overline{n}=\lambda s. \lambda z. s^n z$ or $succ^3 zero=succ (succ (succ zero))$.

Answer: We conjecture that the process takes 3n + 2 leftmost-outermost β -reductions to yield \overline{n} . We show this conjecture holds by first showing that \overline{n} *succ zero* reduces to *succ*ⁿ *zero* in 2 such β -reductions, and then showing inductively that $succ^n$ *zero* takes 3n.

First, we show \overline{n} *succ zero* takes 2 leftmost-outermost $\beta - reductions$ to get to *succ*ⁿ *zero*.

$$\overline{n}$$
 succ zero = $(\lambda s. \ \lambda z. \ s^n \ z)$ succ zero def
 $\longrightarrow_{\beta} (\lambda z. \ succ^n \ z)$ zero β
 $\longrightarrow_{\beta} succ^n$ zero β

Now we show inductively that $succ^n$ zero takes successive leftmost-outermost β -reductions to yield \overline{n} .

For the base case of 0, we find a total of 0 = 3 * 0 reductions to get $\overline{0}$, as desired.

$$succ^0 \overline{0} = \overline{0}$$
 def

For the inductive step of n+1, we find 3n+3=3(n+1) reductions to get $\overline{n+1}$, as desired.

$$succ^{n+1} \ \overline{0} = succ \ (succ^n \ \overline{0})$$
 def

$$= (\lambda n. \ \lambda s. \ \lambda z. \ s \ (n \ s \ z)) \ (succ^n \ \overline{0})$$
 def

$$\longrightarrow_{\beta} \lambda s. \ \lambda z. \ s \ ((succ^n \ \overline{0}) \ s \ z)$$

$$\beta$$

$$\longrightarrow_{\beta}^{3n} \lambda s. \ \lambda z. \ s \ (\overline{n} \ s \ z)$$
 IH

$$= \lambda s. \ \lambda z. \ s \ ((\lambda s'. \ \lambda z'. \ s'^n \ z') \ s \ z)$$
 def

$$\longrightarrow_{\beta} \lambda s. \ \lambda z. \ s \ ((\lambda z'. \ s^n \ z') \ z)$$

$$\beta$$

$$\longrightarrow_{\beta} \lambda s. \ \lambda z. \ s \ (s^n \ z)$$

$$\beta$$

$$= \lambda s. \ \lambda z. \ s \ (s^n \ z)$$
 def

$$= \overline{n+1}$$
 def
def

Thus, in total, for any n, \overline{n} succ zero takes 2 leftmost-outermost β -reductions to get to $succ^n$ zero, and an additional 3n to get to \overline{n} , for a total of 3n+2 leftmost-outermost β -reductions in all.

Task 4 (15 pts) Define the following functions in the *λ*-calculus using the LAMBDA implementation. Here we take "=" to mean =_β, that is, β -conversion.

You may use all the functions in rec.lam as helper functions except those related to full recursion. Your functions should evidently reflect iteration, primitive recursion, and pairs. In particular, you should avoid the use of the *Y* combinator which we introduced in Lecture 2.

Provide at least 3 test cases for each function and include them, together with your function definitions, in the file hw01.lam.

(i) if0 (definition by cases) satisfying the specification

$$\begin{array}{rcl} \text{if0 } \overline{0} \ x \ y & = & x \\ \text{if0 } \overline{k+1} \ x \ y & = & y \end{array}$$

(ii) even satisfying the specification

even
$$\overline{2k}$$
 = true even $\overline{2k+1}$ = false

(iii) half satisfying the specification

$$\begin{array}{lll} \operatorname{half}\, \overline{2k} & = & \overline{k} \\ \operatorname{half}\, \overline{2k+1} & = & \overline{k} \end{array}$$

See hw01soln.lam

Task 5 (15 pts) The Lucas function (a variant on the Fibonacci function) is defined mathematically by

```
\begin{array}{lll} \mathsf{lucas} \ 0 & = & 2 \\ \mathsf{lucas} \ 1 & = & 1 \\ \mathsf{lucas} \ (n+2) & = & \mathsf{lucas} \ n + \mathsf{lucas} \ (n+1) \end{array}
```

Give an implementation of the Lucas function in the λ -calculus via the LAMBDA implementation.

You may use the functions from rec.lam as helper functions, as well as those from Task 4. Your functions should evidently reflect iteration, primitive recursion and pairs. In particular, you should avoid the use of the *Y* combinator.

Test your implementation on inputs 0, 1, 9, and 11, expecting results 2, 1, 76, and 199. Include these tests in your code submission hw01.lam, and record the number of β -reductions used by your function in your written submission.

See hw01soln.lam

Task 6 (20 pts) Give an implementation of the function gcd presented in Lecture 2 using the recursion combinator Y. You may use all the functions in rec.lam. Further, provide at least 5 varied test cases for arguments a, b > 0. Your functions should be included in hw01.lam.

Analyze the behavior of your function outside the intended domain, when a=0 or b=0 or both and include the results in your written submission.

See hw01soln.lam