Assignment 1
The Untyped A-Calculus
Sample Solution

15-814: Types and Programming Languages
Frank Pfenning

Due Tue Sep 9, 2025
80 pts

This assignment is due on the above date and it must be submitted electronically on Grade-
scope. Please use the attached template to typeset your assignment and make sure to include your
full name and Andrew ID. For the written problems, you may also submit handwritten answers
that have been scanned and are easily legible.

Please carefully read the policies on collaboration and credit on the course web pagesat http:
//www.cs.cmu.edu/~fp/courses/15814-f25/assignments.html.

You should hand in two files separately:

* hw01l.pdf with the written answers to the questions.

* hw01l.lamwith the code, where the solutions to the problems are clearly marked and auxil-
iary code (either from lecture or your own) is included so it passes the LAMBDA checker.

1 Calculating in the \-Calculus

Task 1 (5 pts) Define the following functions on Booleans.
1. The “nor” operator, which yields true iff both inputs are false.

2. The conditional “if” such that
z'ftrue €1 €2 =p €1
iffalse €1 €2 =5 €2

3. In the solution file hw01.lam include the necessary definitions of nor and if and also suffi-
cient test cases to certify their correctness.

See hw(01soln.lam

Task 2 (15 pts) One approach to representing functions defined by the schema of primitive recur-
sion is to change the representation so that 7 is not an iterator but a primitive recursor.

0 = As.Az.z
n+1l = As.Az.sm(nsz)

ASSIGNMENT 1 DUE TUE SEP 9, 2025
80 PTS

http://www.cs.cmu.edu/~fp/courses/15814-f25/assignments.html
http://www.cs.cmu.edu/~fp/courses/15814-f25/assignments.html
http://www.cs.cmu.edu/~fp/courses/15814-f25/assignments.html
http://www.cs.cmu.edu/~fp/courses/15814-f25/solutions/hw01soln.lam

The Untyped M-Calculus
Sample Solution HW1.2

1. Define the successor function succ on this new representation (if possible) and show its cor-
rectness.

2. Define the predecessor function pred on this new representation (if possible) and show its
correctness.

3. Explore if it is possible to directly represent any function f specified by a schema of primitive
recursion, ideally without constructing and destructing pairs. Write what you find.

1. succ = An.As. A\z.sn(nsz)
To show this definition correct, we apply it to 7 to find it yields n + 1.

succm = (An.As. A\z.sn(nsz))n def
=As. A\z.sm (s z2) g
=n+1 def

2. pred = An.n(Az. \y.2)0
To show this definition correct, we apply it to 0 to get 0, and apply it to n + I to get 7.

pred0 = (An.n (Az. \y.2)0)0 def

=0(Az.\y.z)0 64

= (Aa. Ab.b) (A\z. \y.)0 def

— (Ab.B)D 3

_7 3
predn+1= (An.n(Az. \y.2)0) (As. A\z.sm (N s 2)) def
=(As.\z.sm(msz)) (Az. \y.2)0 B
=(Az. A\z. \y.2)m(n(A\z. A\y.x) 2)) 0 B
=(\z. \y.z)n(n (Az. A\y. x) 0) B
=(\y.7n) (m (Az. \y.) 0) B
—7 3

3. This representation can indeed be used to directly create lambda terms for functions
definable by the schema of primitive recursion. Suppose one defines f through defining
c and g in the primitive recursion schema below:

fO=c f(n+1)=gn(fn)

Then, given lambda terms ¢ for ¢, and g for g, one can create a lambda term f for f
simply with:

f=XM.ngec

ASSIGNMENT 1 DUE TUE SEP 9, 2025
80 PTS

The Untyped M-Calculus

Sample Solution HW1.3
This can be shown correct by checking that the two equations of the primitive recursive
schema hold for f,g, and ¢ when applied with our new numerical representation.

f0=(A\n.nge)0 def

=0gc B

= (As.Az.2)g¢c def

=(Az.z)¢c B

=C I}
fn+l=(n.nge)n+1 def
=n+1lgc I3
=(As.\z.sm(msz))gce def
= (A\z.gn(ngz))e B
=gn(nge) B
=gn((An.nge)n) B
=gn(fn) def

Task 3 (10 pts) The unary representation of natural numbers requires tedious and error-prone
counting to check whether your functions (such as the Lucas function in the exercise below) be-
have correctly on some inputs with large answers. Fortunately, you can exploit that the LAMBDA
implementation counts the number or reduction steps for you and prints it in decimal form!

(i) We have
T SUCC zero —)E n

because 7 iterates the successor function n times on 0. Run some experiments in LAMBDA
and conjecture how many leftmost-outermost reduction steps are required as a function of n.
Note that only S-reductions are counted, and not replacing a definition (for example, zero by
As. Az. z). We justify this because we think of the definitions as taking place at the metalevel,
in our mathematical domain of discourse.

(ii) Prove your conjecture from part (i), using induction on n. It may be helpful to use the
mathematical notation f*c to describe a \-expression generated by fOc = c and f**lc =
f(f*c) where f and c are A-expressions. For example, m = \s.\z.s" z or succ® zero =

succ (succ (succ zero)).

Answer: We conjecture that the process takes 3n + 2 leftmost-outermost 3-reductions to
yield 7. We show this conjecture holds by first showing that @ succ zero reduces to succ™ zero
in 2 such B-reductions, and then showing inductively that succ™ zero takes 3n.

First, we show 7 succ zero takes 2 leftmost-outermost 5 — reductions to get to succ™ zero.

ASSIGNMENT 1 DUE TUE SEP 9, 2025
80 PTS

The Untyped M-Calculus

Sample Solution HW14
m succ zero = (As. Az. s" z) succ zero def
— g (Az. succ™ z) zero B
— g succ" zero B

Now we show inductively that succ™ zero takes successive leftmost-outermost 5-reductions
to yield 7.
For the base case of 0, we find a total of 0 = 3 % 0 reductions to get 0, as desired.

succ® 0 =0 def

For the inductive step of n+1, we find 3n+3 = 3(n+ 1) reductions to get n + 1, as desired.

succ™™ 0 = succ (succ™ 0) def
= (An. As. \z. s (n s 2)) (succ™ 0) def
—p As. Az. s ((succ™ 0) s z) 64
—>%” As. Az s (T s z) IH
=As. Az. s (A N2 8™) s 2) def
—g As. Az s (N2 ™ 2) 2) g
—g As. Az, s (s" 2) g
= As. Az. 5" 2 def
=n-+1 def

Thus, in total, for any n, n succ zero takes 2 leftmost-outermost S-reductions to get to
succ™ zero, and an additional 3n to get to 7, for a total of 3n+2 leftmost-outermost S-reductions
in all.

Task 4 (15 pts) Define the following functions in the A-calculus using the LAMBDA implementa-
tion. Here we take “=" to mean =g, that is, S-conversion.

You may use all the functions in rec.lam as helper functions except those related to full recur-
sion. Your functions should evidently reflect iteration, primitive recursion, and pairs. In particular,
you should avoid the use of the Y combinator which we introduced in Lecture 2.

Provide at least 3 test cases for each function and include them, together with your function
definitions, in the file hw01 . lam.

(i) if0 (definition by cases) satisfying the specification
if00zy = z
fMk+1lay = y
(ii) even satisfying the specification

even ﬂ = true
even 2k +1 = false

ASSIGNMENT 1 DUE TUE SEP 9, 2025
80 PTS

http://www.cs.cmu.edu/~fp/courses/15814-f25/lectures/02-recursion/rec.lam

The Untyped M-Calculus
Sample Solution HW1.5

(iif) half satisfying the specification
half 2k =
half 2k +1 =

| =

See hw01soln.lam

Task 5 (15 pts) The Lucas function (a variant on the Fibonacci function) is defined mathematically

by
lucas 0 = 2
lucas 1 =1
lucas (n +2) = lucasn + lucas (n+1)

Give an implementation of the Lucas function in the A-calculus via the LAMBDA implementation.
You may use the functions from rec.lam as helper functions, as well as those from Task 4.
Your functions should evidently reflect iteration, primitive recursion and pairs. In particular, you
should avoid the use of the Y combinator.
Test your implementation on inputs 0, 1, 9, and 11, expecting results 2, 1, 76, and 199. Include
these tests in your code submission hw01.1lam, and record the number of S-reductions used by
your function in your written submission.

See hw(01soln.lam

Task 6 (20 pts) Give an implementation of the function gcd presented in Lecture 2 using the re-
cursion combinator Y. You may use all the functions in rec.lam. Further, provide at least 5 varied
test cases for arguments a, b > 0. Your functions should be included in hw01.lam.

Analyze the behavior of your function outside the intended domain, whena = 0 or b = 0 or
both and include the results in your written submission.

See hw(01soln.lam

ASSIGNMENT 1 DUE TUE SEP 9, 2025
80 PTS

http://www.cs.cmu.edu/~fp/courses/15814-f25/solutions/hw01soln.lam
http://www.cs.cmu.edu/~fp/courses/15814-f25/lectures/02-recursion/rec.lam
http://www.cs.cmu.edu/~fp/courses/15814-f25/solutions/hw01soln.lam
http://www.cs.cmu.edu/~fp/courses/15814-f25/lectures/02-recursion.pdf
http://www.cs.cmu.edu/~fp/courses/15814-f25/lectures/02-recursion/rec.lam
http://www.cs.cmu.edu/~fp/courses/15814-f25/solutions/hw01soln.lam

	Calculating in the -Calculus

