Lecture Notes on
Termination

15-814: Types and Programming Languages
Frank Pfenning

Lecture 13
Tue Oct 21, 2025

1 Introduction

In this lecture we prove termination for a fragment of our call-by-value language using the tech-
nique of logical relations [Statman, 1985], in this context often called Tait’s method [1967]. In a way,
this lecture represents a preliminary study towards the more important theorems regarding para-
metricity and representation independence in the following lectures.

The technique we introduce here has proved quite robust with respect to extensions of the
language with features that, at first, seem outside its scope. For example, it has been used to
prove the soundness of extensions of the Rust language that fall outside its type system. We will
mention some of these generalization and applications as we go along. As usual, we concentrate
on the essence of the concepts.

2 The Terminating Fragment

There are two fundamental ingredients in our language that allow us to write nonterminating
programs. The first is recursive types. For example, we can embed the untyped A-calculus using
the type U = pa. a — « satisfying the isomorphism U = U — U. The other is fixed point expressions
fix f.e which reduce to [fix f. e/ f]e. This immediately leads to nontermination with fix f. f, which
is well-typed (and, in fact, has arbitrary type 7).

Perhaps surprisingly, all other types together, including universal and existential types, con-
stitute a terminating language. In order to keep matters as simple as possible, we will start with
treating the language with function types 71 — 72 and bool in the form of Lecture 5, Section 5. The
extension to pairs, unit, sums, and lazy records follows the same blueprint and mapped out in
Section 6. Universals and existential pose a more significant challenge we postpone to the next
lecture.

An important aspect of this development like much of what we have been doing is that the
proof is modular in the type structure, so adding more types does not fundamentally change the
structure of our arguments. This is a benefit we reap from the careful, principled design of the
statics and dynamics of our language.

3 A Proof Attempt
The termination property we ultimately want is the following.

LECTURE NOTES TuUE OcCT 21, 2025

http://www.cs.cmu.edu/~fp/courses/15814-f25/lectures/05-eval.pdf

Termination L13.2

Theorem 1 (Termination, v1) If - - e : 7 then e —* v for some value v.

If we go into this with the proof techniques we have already seen, the natural attempt would
be to prove this by rule induction on the typing derivation.

Proof attempt of vl (doomed to failure). We try a proof by rule inductionon - e : 7.

Case:

T:TFey:my

tp/lam
'|—)\x.€227'1—>7'2 /

Then e = \z. e5 =% Az. e5 which is a value.

That went well! In particular, the restriction to empty contexts in the theorem state-
ment didn’t bother us. There is no case for variables (since the context is empty), but
matters go awry in the case of applications.

Case:

‘Fer:m—=71 -Fey:imy

tp/a
‘Feey: T P/app

We can apply the induction hypothesis to the derivations of the premises.

e1 —* vy for some value vy By ind. hyp.
ex —* vy for some value vy By ind. hyp.

What we need to show is that e; e2 —* v for some v. We can get part of the way
there, first reducing e; to its value and then reducing e, to its value.

e1 ez " vy ey =" vy U2 By properties of —*
By using the canonical forms theorem we can take one more step.

vl = Az. €] By canonical forms
v1 v = (Az. €}) — [ve/x]€] By rule 3

It remains to show that [vy/x]e] —* v for some value v. But we can’t apply the
induction hypothesis to [vz/z]€], nor is this in some way small than e; or es.

The key issue with this proof attempt is that the conclusion, e —* v for some v is too weak. As
the proof attempt shows, we need some property of v besides it mere existence so that once we
have reduced e; es to v1 v2 we can conclude that this reduces to a value.

4 Two Logical Predicates

In order to capture what is missing from the proof attempt so far, we first define (for closed ex-
pressions e only) a predicate (or set) [7] of expressions of a given type 7.

ee[r]iffe —»*vand v € [7].

The question is how do we specify the property of the value v? The failed proof attempt suggests
that we need to specify that somehow v; v, can be subject to our induction hypothesis, where both
vy and v satisfy our value condition. That is:

LECTURE NOTES TuUE OcCT 21, 2025

Termination L13.3

v € [— o] iff for all v; € [1y] we have vy € [12].

The right-hand side here means that v v; — w for some value w and, moreover, w € 3] so it seems
we should be able to complete our proof in this case now.

What about booleans? They are directly observable, so we just prescribe the possible observa-
tion.

v € [bool] iff v = true or v = false.
The principle that is emerging here is:

* For observable types 7, the predicate [7] captures the typing of values and thereby the con-
tents of canonical form theorem. In other words, it is based on the constructors for values of

type .

¢ For nonobservable types 7, the predicate [7] is based on the destructors of the type. This is
because we characterize functions by their behavior when applied to arguments, and lazy
records by their behavior when projections are applied.

An important observation is that this is a good definition because it is inductive on the struc-
ture of 7. In defining [7] we refer to [7], and when [7] refers back to [o] or [o] it is always on o that
are strictly smaller than 7.

We can now generalize the theorem statement to take the logical predicate into account.

Theorem 2 (Termination, v2) If - e : 7 then e € [7].

As you can easily check the case for application in a rule induction now goes through, but
unfortunately not the case for M-abstraction.

Before we see whether we are now “done” (that is, have found the needed generalization),
let’s do a couple of examples to get some experience with these definitions.

Az.z € [bool — bool]. Here is the chain of reasoning;:

Consider \z. z € [bool — bool]

Az.z =0 \z. x so, by definition, it suffices to show A\x.z € [bool — bool]
Assume w € [bool]

By definition of [—], it remains to show: (A\z.z) w € [bool]

By rule, (Az.z)w —! w

So it remains to show: w € [bool]

This matches our assumption.

Az.if z false true € [bool — bool]. Here is the chain of reasoning:

Consider \z. if z false true € [bool — bool]

This is a value, so as before we need to show Az. if z false true € [bool — bool]
Assume w € [bool]

By definition of [, it remains to show: (Az.if x false true) w € [bool]

(Az.if x false true) w — if w false true

We know w € [bool], so we can distinguish its two cases.

Case: w = true.

LECTURE NOTES TuE OcCT 21, 2025

Termination L13.4

Then if w false true 1! false
and false € [bool] because it is a value and false € [bool]

Case: w = true.
Then if w false true ! true
and true € [bool] because it is a value and true € [bool]

Regarding our proposed theorem above, a proof by rule induction still does not work.
Proof attempt of v2 (doomed once again to failure). We try to apply rule induction on
the typing derivation.

Case:

T:TEey:my

tp/lam
-F)\x.€2:7'1—>7'2 /

We have that e = Az. es =9 \x. e5 which is a value, so we have to show
Az. ey € [11 — T2

This is the case if
(Az.e9) vy € [12] for all vy € [1]

While we can step the expression to [v;/z]e; we cannot apply the induction hy-
pothesis because the context of the premise z : 71 F ez : 7 is not empty and,
anyway, the subject of the judgment is ey rather than [v; /z]es.

5 Simultaneous Substitutions

In order to solve this second impasse, we need to think about the role of contexts I' as an expres-
sion is evaluated. In a call-by-value language we always evaluated closed expressions, and we
accomplish that by always substituting closed values for variables. In the failed proof attempt
above, we substitute v; for x in eo. We know that v; is not only closed, but that v; € [].

More generally, when we type-check an expression I' - e : 7, then if reduction every reaches e,
we have substituted for all the variables declared in I' close up the expression. We write

Simultaneous Substitution 7 = vi/x1,...,0,/%y

where all the z; are distinct. We say 7 matches I' (written n € [I']) if n(z) € [7] for every x : 7 in
I'. We write n(e) for applying the substitution to an expression e, under the presupposition that 7
substitutes for all the free variables in e. More rigorously, on our small fragment we define it as

n(er e2) = n(e1)n(ea)

n(Ax.e) = Az.(n,z/z)(e)

n(x) = v wherev/z €n
n(true) = true

n(false) = false

n(if e1 ez e3) = if n(er) n(ez) nles)

It should be easy to see how to extend this to a more complete language.
Now, our final generalization:

LECTURE NOTES TUE OcCT 21, 2025

Termination L13.5

Theorem 3 (Termination, v3) IfI' e : 7and n € [['] then n(e) € [7].

Proof: By rule inductiononI'Fe: 7.

Case:

Case:

Case:

z:7el

— tp/var
'tax:7 p/

This case is new, because the expression in the type derivation are no longer closed, even if
the result of applying the substitution is.

n €[] Assumption
n(e) = n(x) = vfor (v/z) €n By definition of substitution
v €[] By definition of '] and z : 7 € T
v By definition of —°
n(e) = v e 7] By definition of [—]

I'Fei:m—=7 T'key:m

tp/a
F|—61622T p/pp

We started thinking about this case. Hopefully it should be relatively straightforward now.

n € I Assumption
To show: n(e) = n(e1 e2) = n(er) nlez) € [2]

ner) € [r2 — 7] By ind. hyp.
n(e1) —=* vy and vy € [2 — 7] By definition
n(ez) € [z By ind. hyp.
n(ez) —* vy and ve € [19] By definition
ner) nlez) —=* vin(ez) =" vi v By properties of +—*
vy v € 7] By definition of [—]

The last step was the critical one. So we have
77(61 62) —* vy g € [[T]]

Now we need a small lemma called closure under reverse evaluation (see Lemma 4 below) to
conclude that n(e; e2) € [7].

Tex:mbe:m
tp/lam
I'FXx.eag:m1 =1

n € I Assumption
n(Az.ex) = Az. (n,z/)(e2) =0 A\z. (eta, z/z)(ez) value By definition of substitution
It remains to show: A\z. (eta,z/z)(e2) € [11 — T2

w € [11] Assumption
(A\z. (eta,z/x)(e2)) w — (eta,w/x)(e2) By property of substitution
(n,w/x) € [I',x : 7] sincen € I"and w € [11]

(0, w/)(e2) € [r2] By ind. hyp
Az, (n,x/z)(e2) € [T1 — T2 By definition of [—]

LECTURE NOTES TuUE OcCT 21, 2025

Termination L13.6

Case:

— tp/true
I' F true : bool P/

Then true value and true € [bool] so true € [bool].

Case: e = false is like the previous case.

Case:
I'Fey:bool I'key:7 I'keg:T _
: tp/if
I'Hifeieges: T
n € I Assumption
n(if e1 ez e3) = if n(e1) n(e2) n(es) By defn.
n(e1) € [bool] By ind. hyp.
n(e1) —* v; and vy € [bool] By defn.
v1 = true or vy = false By defn of [bool]
v1 = true First subcase
if n(e1) nlez) nles) =" if vi n(ez) n(es) = if true n(ez) nles) = nlez)

By property of evaluation and rule
n(ez) € [7] By ind. hyp.
if n(e1) n(e2) n(es) € [7] By closure under reverse evaluation (Lemma 4)

v1 = false Second subcase
Symmetric to the first subcase

U
Lemma 4 (Closure Under Reverse Evaluation) Ife —* ¢’ and €’ € 7] then e € [1].
Proof: Direct.
¢ —*vand v € [7] since ¢’ € [7] By definition
e—*v By transitivity of —*
ee[7] By definition
g

The property and its proof is remarkable in more than one way. Like the proofs of preservation
and progress it decomposes into subproofs for each type constructor. The proof also incorporates
three theorems we proved separately before: type preservation, progress, and canonical forms.

We spent a lot of effort of showing that all well-typed terms satisfy the logical predicate, but
some ill-typed terms do as well. For example,

if true false (Az.) € [bool]

That’s because
if true false (Az.x) — true

and true € [bool].

The fact that our definition allows for some ill-typed terms is actually useful: it allows us to
prove property of programs we may wish to write but are not well-typed, but nonetheless well-
behaved (see Timany et al. [2024]). This can be applied, for example, when we want to show the
soundness of extensions of Rust with modules that cannot be statically checked to be type-correct.

LECTURE NOTES TuUE OcCT 21, 2025

Termination L13.7

6 Logical Predicates for More Types

As already mentioned, our call-by-value language has some constructs that allow nonterminating
computations, so we cannot extend the termination theorem to the full language. But we can
consider those that are still terminating and write out the definition of the [7] predicate on them.
Note that [7] does not change, since it reduces to evaluation and the [r] property.

First, the observable types, generalizing the booleans.

v E [r X 7] iff v = (v1,v2) and v € [11] and vy € [79]
ve(l] iff v=1{)
v E [Z’LGI(?’ : Tl)] Iff v = k . ,U/ and 'U/ c [Tk]

Recall that under this definition, the booleans are now represented as bool = (true : 1)+ (false : 1).
The new definition of the logical predicate on booleans coincides with the previous one.

For the types that are not directly observable types we apply the destructors to observe their
behavior. Since we have already shown the functions, only the lazy records remain.

v E [&erli:m)| iff wie[r]foralliel

For all of these extensions of the logical predicate, it remains defined inductively on the structure
of the type. So one might ask why we don’t use the logical predicate directly as a definition
for validity of programs. The problem is that the quantification over all w € [71] in the case of
functions

ve[n = iff vwe [rn]forallw e [r]

leads to an undecidable criterion. So instead we use syntactic typing, ideally bidirectional, as our
criteria for valid program and then show that all syntactically valid programs are also semantically
valid.

If we try to extend the logical predicate further to recursive types in a straightforward way, we
lose the inductive nature of the definition.

v € [pa. 7] iff v=foldvand v’ € [[ua.T/a]r] nota well-founded definition!

The issue here is that [uc. 7/a|T may be bigger than the original type pa. 7 so the definition is no
longer inductive. And, indeed, it would not be possible to prove termination because it no longer
holds with recursive types unless we impose some restrictions.

Similarly, if we leave fixed points in the language we can no longer prove termination because
it doesn’t hold, even if you don’t have recursive types. In Exercise 3 we ask you to show exactly
where the proof fails.

But there is also good news: We can add suitable cases for universal and existential quantifi-
cation to the definition of the logical predicate and prove termination! The first argument in this
style for normalization in an expressive polymorphic A-calculus was given by Girard [1971]. What
does not work is the following natural attempt.

veVa.m iff vlo] €[[o/a]r] forallc not a well-founded definition!

The problem here is once again that the type Va. 7 itself is a possible o, so the definition is also
circular. But in this case there is an elegant way out, which we discuss in the next lecture.

LECTURE NOTES TuE OcCT 21, 2025

Termination L13.8

Exercises

Exercise 1 Show the cases for each of the following types in the termination proof using a logical
predicate. Note that it will by necessity consider both constructors and destructors for each kind
of type.

(i) Products 71 x 7o
(i) Unit 1
(iii) Sums » (i : 1)
(iv) Lazy records &;c;(i: 7;)

Exercise 2 Consider the fully observable types
rho=r x| 1] Z(z 1)
icl

Prove that - - v : 71 iff v € [r7], that is, typing coincides with the logical predicate on fully
observable values.

Exercise 3 Consider adding fixed points with their usual typing rule and identify the point in
the proof of termination where the argument for the language fragment considered in this lecture
breaks down.

References

Jean-Yves Girard. Une extension de l'interpretation de Godel a 1’analyse, et son application a
I’élimination des coupures dans l'analyse et la théorie des types. In Proceedings of the Second
Scandinavian Logic Symposium, pages 63-92, Amsterdam, 1971.

Richard Statman. Logical relations and the typed A-calculus. Information and Control, 65:85-97,
1985.

W. W. Tait. Intensional interpretation of functionals of finite type 1. Journal of Symbolic Logic, 32:
198-212, 1967.

Amin Timany, Robbert Krebbers, Derek Dreyer, and Lars Birkedal. A logical approach to type
soundness. Journal of the ACM, 71(6):1-75, 2024.

LECTURE NOTES TuUE OcCT 21, 2025

	Introduction
	The Terminating Fragment
	A Proof Attempt
	Two Logical Predicates
	Simultaneous Substitutions
	Logical Predicates for More Types

