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1 Introduction

Subtyping is a general technique in order to allow more natural expression of certain kinds of
program. One can also think of it as checking more properties of programs that can already be
written. There are different notions of subtyping. The first, more general one is coercive subtyping
where we allow τ ≤ σ (read τ is a subtype of σ) if there is a prescribed way to convert a value of
type τ to a value of type σ. A commonly-used example is int ≤ float that allows us to convert an
integer into a floating point number. This is also an indication of some of the dangers of coercive
subtyping, as not all int’s may have an exact representation as floating point numbers. Moreover,
since subtyping is generally implicit, it may not be clear when and how coercions are applied,
which can lead to subtle bugs. For more on this point of view, see Breazu-Tannen et al. [1991].

Another point of view is the subset interpretation that says that τ ≤ σ may hold if every value
of type τ also has type σ, without the need to apply a conversion. It might seem that in our strict
type-based development of the language, this should rarely if ever be the case. A key ingredient
is to generalize the binary (τ + σ) and nullary (0) sums to be general labeled sums. We similarly
generalize lazy records. That is, for finite index sets I we have

Types τ ::= . . . |
∑

i∈I(i : τi) | Ni∈I(i : τi)

Then we recover the binary and nullary cases as follows:

τ + σ ≜ (l : τ) + (r : σ)

0 ≜
∑

i∈{ }()

τ N σ ≜ (π1 : τ) N (π2 : σ)

⊤ ≜ N∈∈{ }()

This apparently small change has a major impact regarding subtyping. Consider in LAMBDA

syntax:
type bool = (’true : 1) + (’false : 1)
type true = (’true : 1) + ()
type false = () + (’false : 1)

Here, the empty parenthesis () are there just to disambiguate the unary sum from a unary lazy
record formed with &. Here, it should be the case that true ≤ bool and false ≤ bool since there is
only one value of type true, namely ’true (), while bool is inhabited by ’true () and ’false ().

Here is an example from lazy record:
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type finstream = $stream. (’empty : 1) & (’next : nat * stream)
type infstream = $stream. () & (’next : nat * stream)

The type finstream could be finite, while infstream is always infinite.
In this lecture we explore just the subtyping that arises from sums. There is extensive literature;

you might find Lakhani et al. [2022] a useful entry point with many pointers to further readings.

2 Labeled Sums

The rules for finite labeled sums
∑

i∈I(i : τi) are a straightforward generalization of binary and
nullary sums. We show here only the rules for the statics and dynamics, but we will have occasion
to reconsider one of them, marked with an asterisk.

Γ ⊢ τi type (for all i ∈ I)

Γ ⊢
∑

i∈I(i : τi) type
tp/sum

(k ∈ I) Γ ⊢ ek : τk Γ ⊢
∑

i∈I(i : τi) type

Γ ⊢ k · ek :
∑

i∈I(i : τi)
tp/tag

Γ ⊢ e :
∑

i∈I(i : τi) Γ, xi : τi ⊢ ei : σ (for all i ∈ I)

Γ ⊢ case e (i · xi ⇒ ei)i∈I : σ
tp/cases∗

e value
k · e value

val/tag
vk value

case k · vk (i · xi ⇒ ei)i∈I 7→ [vk/xk]ek
step/cases/tag

e1 7→ e′1

k · e1 7→ k · e′1
step/tag

e0 7→ e′0

case e0 (i · xi ⇒ ei)i∈I 7→ case e′0 (i · xi ⇒ ei)i∈I
step/cases0

3 Properties of Subtyping

When designing rules for subtyping τ ≤ σ we need to make sure we understand the properties
we want this relationship to satisfy. The first is somewhat straightforward: every value of type τ
should also be a value of type σ.

Value inclusion: If · ⊢ v : τ and τ ≤ σ then · ⊢ v : σ

As we will see, this by itself isn’t sufficient to characterize subtyping. We recap the earlier
example:

type bool = (’true : 1) + (’false : 1)
type true = (’true : 1) + ()
type false = () + (’false : 1)

This suggests the following rule:

I ⊆ K∑
i∈I(i : τi) ≤

∑
k∈k(k : τk)

sub/sum/width

LECTURE NOTES THU OCT 2, 2025



Subtyping L12.3

This is called width subtyping because we just take a subset of the labels. We can still satisfy the
value inclusion principle if we allow the components that are present to be subtypes rather than
be identity.

I ⊆ K τi ≤ σi (for all i ∈ I)∑
i∈I(i : τi) ≤

∑
k∈k(k : σk)

sub/sum

This is often referred to as depth subtyping because we compare the components, not just the set of
indices.

If we consider the interpretation of a type as a set of values, we could take one further step:
the τi that are empty types do not contribute to the set of values. So we could have

τj empty (for all j ∈ J ⊆ I) τi ≤ σi (for all i ∈ I\J)∑
i∈I(i : τi) ≤

∑
k∈k(k : σk)

sub/sum/empty

We then also have to supply rules for the τ empty judgment. While sound, taking emptiness into
account while subtyping can also lead to unexpected results by letting questionable code pass.
For example, we would have 0 × bool ≤ nat but programs are a priori unlikely to want to take
advantage of that. Also, whether types are empty is a rather delicate property. For example, in
Haskell all data types are inhabited by ⊥ (representing nontermination), while in the ML family
of languages there are empty types such as datatype empty = Void of empty.

So for this lecture, we stick with the more robust middle ground: we have width subtyping
and also depth subtyping, but we don’t explicitly take emptiness into account. Still, it is the case
that

0 ≤ (true : 1) + (false : 1) = bool

because it follows from the general rules for subtyping between sums because { } ⊆ {true, false}.
We consider the other types whose values are observable.

1 ≤ 1
sub/one

τ1 ≤ σ1 τ2 ≤ σ2

τ1 × τ2 ≤ σ1 × σ2
sub/times

Now we could prove the value inclusion property as a theorem, by straightforward rule induction.
Instead, we will move on to function types, which stand in for general behavioral types.

4 Subtyping Functions

Let’s say we have a function, like not : bool→ bool where bool = (true : 1) + (false : 1). Clearly,
we can apply the function to a value of type true = (true : 1) + () because true ≤ bool. So every
value of type true also has type bool

Even though we haven’t yet considered have recursive types, let’s consider an example of
them where we try to capture positive natural numbers.

type nat = $nat. (’zero : 1) + (’succ : nat)
type pos = () + (’succ : nat)

A quick observation: we have

fold ’zero () : nat
fold ’succ fold ’zero () : nat
’succ fold ’zero () : pos

LECTURE NOTES THU OCT 2, 2025



Subtyping L12.4

so it is not quite true that every value of type pos also has type nat. So we need to add µα even if
α does not occur, that is, the type pos isn’t really recursive.

type nat = $nat. (’zero : 1) + (’succ : nat)
type pos = $a. () + (’succ : nat)

Now we have, as anticipated:

fold ’zero () : nat
fold ’succ fold ’zero () : nat
fold ’succ fold ’zero () : pos

So it should hold (and will, see Section 6) that pos ≤ nat. Then we would further expect that

decl succ : nat -> pos
defn succ = \x. fold ’succ x

We can confirm this by running it through the LAMBDA implementation, using the --subtyping=true
flag.

Because every value of type pos also has type nat, we should also get succ : nat -> nat. In
other words, we should have nat→ pos ≤ nat→ nat.

Conversely, since have checked that succ : nat -> pos it should also be the case that succ : pos -> pos.
We have more information on the input to the function, but since it returns a positive number no
matter which number is it given, this will be particularly be the case if know the input is positive.
In summary: nat→ pos ≤ pos→ pos.

These considerations lead us to the following subtyping rule for functions.

σ1 ≤ τ1 τ2 ≤ σ2

τ1 → τ2 ≤ σ1 → σ2
sub/arrow

We say that the function type is covariant in its result and contravariant in its argument. In contrast,
product types are covariant in both components.

To justify this rule we need to extend our principle of value inclusion to general expressions
(because that’s what the bodies of λ-abstraction are) and also account for nonempty contexts.

Right subsumption: If Γ ⊢ e : τ and τ ≤ σ then Γ ⊢ e : σ

Left subsumption: If Γ, x : σ ⊢ e : ρ and τ ≤ σ then Γ, x : τ ⊢ e : ρ.

It turns out, that in the bidirectional system for typechecking we only need to generalize the
rule for changing direction.

Γ ⊢ e ⇒ τ τ ≤ σ

Γ ⊢ e ⇐ σ
⇒/⇐

If we were considering universal or existential types (which are beyond the scope of this lecture),
we would carry the context Γ into the subtyping judgment.

This kind of subtyping for functions is quite powerful. Consider the four possible types for
the successor function.

type nat = $nat. (’zero : 1) + (’succ : nat)
type pos = $a. () + (’succ : nat)
% so pos <: nat

decl succ : nat -> pos
defn succ = \x. fold ’succ x
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decl succ : nat -> nat % since nat -> pos <: nat -> nat
decl succ : pos -> pos % since nat -> pos <: pos -> pos
decl succ : pos -> nat % since nat -> pos <: pos -> nat

We see that three are redundant once we have first type. It is not always the case that there is a
most informative type, and we’ll see some examples later.

5 Summary So Far

The rules for subtyping:

I ⊆ K τi ≤ σi (for all i ∈ I)∑
i∈I(i : τi) ≤

∑
k∈k(k : σk)

sub/sum

1 ≤ 1
tp/one

τ1 ≤ σ1 τ2 ≤ σ2

τ1 × τ2 ≤ σ1 × σ2
tp/times

σ1 ≤ τ1 τ2 ≤ σ2

τ1 → τ2 ≤ σ1 → σ2
sub/arrow

The properties of subtyping:

Right subsumption: If Γ ⊢ e : τ and τ ≤ σ then Γ ⊢ e : σ

Left subsumption: If Γ, x : σ ⊢ e : ρ and τ ≤ σ then Γ, x : τ ⊢ e : ρ.

When trying to prove these we discover that the earlier rules for typing a case over values of
sum type is incorrect! What’s the problem? Please think about this before reading on: it is an
excellent exercise in bringing inference rules and their properties together.
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To see the problem, consider

decl pred : nat -> nat
defn pred = \x. case unfold x of

( ’zero () => fold ’zero ()
| ’succ y => y )

By the left subsumption principle, we shold also have

pred : pos -> nat

because every positive natural number is also a natural number (pos ≤ nat). However, the defini-
tion of pred does not check against this type! We have

x : pos ⊢ x : pos

x : pos ⊢ unfoldx : ( ) + (succ : nat)
tp/unfold

??

x : pos ⊢ case unfoldx (zero ( ) ⇒ fold zero ( ) | succ y ⇒ y)
tp/cases

· ⊢ λx. case unfoldx (zero ( ) ⇒ fold zero ( ) | succ y ⇒ y) : pos→ nat
tp/lam

The problem here is that the subject of the case has type ( ) + (succ : nat) but the case expression
has two branches: one for label zero and one for label succ. So far this expression to type-check
we need to ignore the extraneous branch for label zero!

So we get the new rule

Γ ⊢ e :
∑

i∈I(i : τi) I ⊆ J Γ, xi : τi ⊢ ei : σ (for all i ∈ I)

Γ ⊢ case e (j · xj ⇒ ej)j∈J : σ
tp/cases

From the perspective of a programmer, this may be unexpected but it is difficult to avoid and
maintain the desirable properties of subtyping. A practical solution might be to track all the
branches that are used and issue warnings for unreachable branches. Fortunately, all the proper-
ties of our language we have discussed like preservation, progress, canonical forms, sequentiality,
finality of values, etc. remain intact if we allow unreachable branches.

We did not discuss it explicitly, but we also have reflexivity and transitive as properties of
subtyping.

Reflexivity: τ ≤ τ for all types τ .

Transitivity: If τ ≤ σ and σ ≤ ρ then τ ≤ ρ.

Both of these can be proved for the types so far (sums, products, units, and functions) by
simple inductions. However, we pointedly omitted recursive types, which require a significant
shift of viewpoint. Under this new viewpoint these properties still hold, but they can no longer be
proved by induction.

6 Subtyping Recursive Types

As a more interesting example for recursive types, let’s consider even and odd numbers. We’d
like to satisfy

nat ∼= (zero : 1) + (succ : nat)

even ∼= (zero : 1) + (succ : odd)
odd ∼= () + (succ : even)
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The last two are mutually recursive, so we have to expand the second one in place to obtain explicit
definitions.

nat = µnat. (zero : 1) + (succ : nat)

even = µeven. (zero : 1) + (succ : µodd. () + (succ : even))
odd = µodd. () + (succ : even)

We would like to have that even ≤ nat and odd ≤ nat, but neither even ≤ odd nor odd ≤ even.
We can try the plausible rule

[µα. τ/α]τ ≤ [µβ. σ/β]σ

µα. τ ≤ µβ. σ
sub/rec

and start to construct a derivation.

1 ≤ 1
sub/one

...
odd ≤ nat

(zero : 1) + (succ : odd) ≤ (zero : 1) + (succ : nat)
sub/sum

even ≤ nat
sub/rec

Here the two premises of sub/sub account for the labels zero and succ. In the second premise, we
once again unfold the recursive types.

1 ≤ 1
sub/one

...
even ≤ nat

() + (succ : even) ≤ (zero : 1) + (succ : nat)
sub/sum

odd ≤ nat
sub/rec

(zero : 1) + (succ : odd) ≤ (zero : 1) + (succ : nat)
sub/sum

even ≤ nat
sub/rec

At this point we seem to be stuck because the original goal of proving even ≤ nat has been reduced
to itself! On the other hand, we haven’t found a “counterexample”, that is, a value that would be
in the type on the smaller type but not the larger one. If such an example existed, we would have
already encountered it because from now on, any attempt at creating a derivation of even ≤ nat
will just repeat the same fragment of a derivation we wrote out so far.

This suggests that we can build a cyclic derivation as evidence that the subtyping judgment
holds because the smallest counterexample cannot be above the node we use for the cycle.

Actually, any finite (closed off by axioms) or infinite derivation is acceptable as evidence that
there is no counterexample. Unfortunately, infinite derivations are difficult to write out. Instead,
we can view a finite but circular derivation as a finite representation of its infinite unfoldings. This
is somewhat like µα. τ serving as a representation of its infinite unfolding.

Can this work algorithmically as a decision procedure for subtyping? Yes! The key insight is
that in a typing derivation of τ ≤ σ there will be at most n2 different questions we can ask when
constructing a derivation bottom-up, where n is the number of type constructors in τ and σ (which
we might write as n = |τ |+ |σ|. Any subexpression of τ might be compared to any subexpression
of σ, but no more: all the rules except sub/rec access components of the types, and sub/rec just
unfolds the type without creating any new subexpressions. This means that along any path in the
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derivation we are trying to construct we must eventually find a counterexample (that is, no rule is
applicable) or reach a cycle.

To illustrate this further, let’s try to prove odd ≤ even, which clearly should fail.

no rule applies

(zero : 1) + (succ : odd) ≤ () + (succ : even)

even ≤ odd
sub/rec

() + (succ : even) ≤ (zero : 1) + (succ : odd)
sub/sum

odd ≤ even
sub/rec

At the leaf, no rules applies because the label zero exists on the left-hand side but no on the right-
hand side.

From this failed derivation we can construct a counterexample by using a corresponding con-
structor. As long as the rule applies, the constructors (and labels) will match, but the place where
no rule applies, one side will allow a constructor the other one doesn’t.

⊢ fold succ fold zero ( ) : odd
̸⊢ fold succ fold zero ( ) : nat

As mentioned above, there won’t always be a (closed) counterexample unless we account for
empty types. You can read about how to account for these and also construct counterexamples in
Lakhani et al. [2022] and Ligatti et al. [2017]. The pioneering work on subtyping recursive types
was by Amadio and Cardelli [1993] and Brandt and Henglein [1998].

7 Coinductively Interpreted Rules

Unfortunately, there is no universally accepted notation for inference rules to be interpreted coin-
ductively, that is, allow infinite proofs. We use a dashed rule to indicate such rules.

I ⊆ K τi ≤ σi (for all i ∈ I)∑
i∈I(i : τi) ≤

∑
k∈k(k : σk)

sub/sum

1 ≤ 1
tp/one

τ1 ≤ σ1 τ2 ≤ σ2

τ1 × τ2 ≤ σ1 × σ2
tp/times

σ1 ≤ τ1 τ2 ≤ σ2

τ1 → τ2 ≤ σ1 → σ2
sub/arrow

[µα. τ/α]τ ≤ [µβ. σ/β]σ

µα. τ ≤ µβ. σ
sub/rec

In case a derivation is circular, we label a judgment with a number in parentheses and then use
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this number to indicate a backlink.

1 ≤ 1
sub/one

[1]

even ≤ nat

() + (succ : even) ≤ (zero : 1) + (succ : nat)
sub/sum

odd ≤ nat
sub/rec

(zero : 1) + (succ : odd) ≤ (zero : 1) + (succ : nat)
sub/sum

[1] even ≤ nat
sub/rec

The central properties of reflexivity and transitivity still hold for this coinductive judgment (as
do the subsumption properties), but their proofs are no longer by induction but by coinduction,
which is beyond the scope of this lecture.

There are techniques to transform infinitary systems into finitary ones, that work especially
well if we know that derivations should eventually be finite or circular. For example, we can add
a context of subtyping judgments we have seen and then succeed when encounter in the context.
In this particular example this would look like this:

even ≤ nat ⊢ 1 ≤ 1
sub/one

even ≤ nat, odd ≤ nat ⊢ even ≤ nat
hyp

even ≤ nat, odd ≤ nat ⊢ () + (succ : even) ≤ (zero : 1) + (succ : nat)
sub/sum

even ≤ nat ⊢ odd ≤ nat
sub/rec

even ≤ nat ⊢ (zero : 1) + (succ : odd) ≤ (zero : 1) + (succ : nat)
sub/sum

· ⊢ even ≤ nat
sub/rec

It should be easy to see that the two sets of inference rules coincide, and that derivations in the
latter are the usual, inductive kind: something is derivable if there is a finite derivation of the
judgment.

8 Subtyping in LAMBDA

You can experiment with subtyping in LAMBDA, using the --subtyping=true command line
switch. You can find code with the examples from this lecture in lec12.cbv.

We have there one additional example we wrote in lecture, namely a version of the interpreter
in continuation-passing style that distinguishes object-level values as a subtype of object-level ex-
pressions. Typing the guarantees that evaluation returns a value and not an arbitrary expression.
See cps.cbv.
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