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1 Introduction

Using type structure to capture common constructions available in programming languages, we
have built a rich set of primitives in our programming language (see 07-isomorphisms-rules.pdf
for a summary of the rules). Booleans turned out be representable using generic constructions,
since bool = 1 + 1. However, natural numbers would be

nat = 1 + (1 + (1 + · · ·))

which cannot be expressed already. However, we can observe that the tail of the sum is equal to
the whole sum. That is,

nat = 1 + nat

We won’t be able to achieve such an equality, but we can achieve an isomorphism

nat ∼= 1 + nat

with two functions to witness the isomorphism.

nat
unfold−→∼=←−
fold

1 + nat

Actually, unfold and fold will not be functions but language primitives because we want them to
apply to a large class of recursively defined types.

2 Recursive Types

The more general type constructor that solves recursive type equations is written as µα. τ . Mu (µ)
here stands for “recursive”, α is a type variable with scope τ .1 The general picture to keep in mind
is that a recursive type µα. τ should be isomorphic to its unfolding [µα. τ/α]τ .

µα. τ

unfold−→∼=←−
fold

[µα. τ/α]τ

1Sometimes µα. τ is reserved for so-called inductive types which requires some restrictions on the occurrences of α in
τ . Since our type is indeed inductive (rather than, for example, coinductive) whenever these restrictions are satisfied,
we will use the notation µα. τ . It is also common in the literature.
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Recursive Types L8.2

Once we have defined the fold and unfold expressions with their statics and dynamics, we will
have to check that these two types are indeed isomorphic.

As an example, consider
nat = µα. 1 + α

Does this give us the desired isomorphism? Let’s check:

nat = µα. 1 + α
∼= [µα. 1 + α/α](1 + α)
= 1 + (µα. 1 + α)
= 1 + nat

So, yes, we get the desired isomorphism. Here are some other examples of types with recursive
definitions we’d like to represent in a similar manner.

Lists list τ ∼= 1 + (τ × list τ)
Binary Trees tree ∼= 1 + (tree× nat× tree)
Binary Numbers bin ∼= list (1 + 1)

For example, binary trees of natural numbers would then be explicitly defined as

tree = µα. 1 + (α× nat× α)
∼= 1 + (tree× nat× tree)

and satisfy the desired isomorphism.

3 Fold and Unfold

Let’s recall the principal isomorphism we would like to have:

µα. τ

unfold−→∼=←−
fold

[µα. τ/α]τ

Each new type we have comes with some constructors for values of the new type and some de-
structors. Computation arises when a destructor meets a constructor. According to the display
above, fold should be the constructor (because it results in something of type µα. τ ), while unfold is
a destructor. Reading the types off the above desired isomorphism:

Γ ⊢ e : [µα. τ/α]τ

Γ ⊢ fold e : µα. τ
tp/fold

Γ ⊢ e : µα. τ

Γ ⊢ unfold e : [µα. τ/α]τ
tp/unfold

We decide that fold e is a value only if e is a value. This is so that, for example, when we write
v : nat, the value v will actually directly represent a natural number instead of some expression
that might result in a natural number (see Exercise 1).

e value
fold e value

val/fold

The interesting rule for stepping (usually the first one to write) is the one where a destructor meets
a constructor.

v value
unfold (fold v) 7→ v

step/unfold/fold
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Does this rule preserve types? Let’s say we have

· ⊢ unfold (fold v) : σ

By inversion (only the unfold rule could have this conclusion), we obtain

· ⊢ fold v : µα. τ

where σ = [µα. τ/α]τ . Applying inversion again, we get

· ⊢ v : [µα. τ/α]τ

which is also the type of unfold (fold v). Therefore, the rule step/unfold satisfies type preservation.
We now only need to add rules to reach values and redices, so-called congruence rules.

e 7→ e′

fold e 7→ fold e′
step/fold

e 7→ e′

unfold e 7→ unfold e′
step/unfold0

It is a matter of checking the progress theorem and also verifying the desired isomorphism to
ensure that we now have enough rules. A student suggested

fold (unfold e) 7→ e
?

which is eminently reasonable, but turned out to be unnecessary. Instead, we find that fold (unfold e)
is extensionally equivalent to e at type µα. τ .

4 Examples

Before we check our desired properties, let’s write some examples on natural numbers (in our
unary representation).

nat = µα. 1 + α
∼= 1 + nat

zero : nat
zero = fold (l · ⟨ ⟩)

one : nat
one = fold (r · zero)

= fold (r · fold (l · ⟨ ⟩))

succ : nat→ nat
succ = λn. fold (r · n)

pred : nat→ nat
pred = λn. case (unfold n) (l · x1 ⇒ zero | r · x2 ⇒ x2)

At this point we realize that we cannot write any function that recurses over a natural number.
Unlike the λ-calculus, the representation here as a sum and a recursive types only allows us to
implement a case construct. This is not a significant obstacle, since we will shortly add general
recursion to our language and then functions like addition, multiplication, exponentiation, and
greatest common divisor can be implemented simply and uniformly. On the positive side, we
have a constant-time predecessor, which we did not have for Church numerals.
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5 Preservation and Progress

We have already seen the key idea in the preservation theorem; all other cases are simple and
follow familiar patterns.

For progress, we first need a canonical form theorem. We get the new case

(vi) If · ⊢ v : µα. τ and v value then v = fold v′ for a value v′.

This follows, as before, by analyzing the cases for typing and values.
The critical case in the proof of progress (by rule induction on the given typing derivation) is

· ⊢ e1 : µα. τ

· ⊢ unfold e1 : [µα. τ/α]τ
tp/unfold

If e1 7→ e′1 then, by rule, unfold e1 7→ unfold e′1. If e1 is a value, then the canonical forms theorem
tells us that e1 = fold v2 for some value v2. Therefore, the step/unfold applies and unfold (fold v2) 7→
v2.

6 Isorecursive Types

The new type constructor µα. τ we have defined is called an isorecursive type, because we have and
isomorphism

µα. τ

unfold−→∼=←−
fold

[µα. τ/α]τ

rather than an equality between the two types (which would be equirecursive). But is it really an
isomorphism? Let’s check the two directions.

First, we need to check that unfold (fold v) = v for any value v : [µα. τ/α]τ . But immediately
(by rule step/unfold) we have

unfold (fold v) 7→ v

so the two are certainly equal.
In the other direction, we need to verify that

fold (unfold v)
?
= v for any value v : µα. τ

By the canonical forms theorem, v = fold v′ for some value v′. Then we reason

fold (unfold v)
= fold (unfold (fold v′))
7→ fold v′

= v

So, an isorecursive type is indeed isomorphic to its unfolding.
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7 Excursion: Embedding the Untyped λ-Calculus

Now that we have recursive types, perhaps we can type λx. x x, which we previously proved to
have no type. And if that works, why stop there? Why not type the Y combinator itself? In
an earlier lecture we convinced ourselves that λx. x x : τ → σ for any types τ and τ satisfying
τ = τ → σ. That’s because x needs to take itself as an argument.

This does not seem promising, since we still cannot solve this equation! But we may be able to
approximate it by an isomorphism. Can we find a type U such that U ∼= U → τ2. The unspecified
type τ2 gets in the way, so let’s try it with τ2 = U . So, we have to solve

U

unfold−→∼=←−
fold

U → U

In our language, any recursive type equation has a solution (perhaps degenerate), so we just set

U = µα. α→ α ∼= U → U

Let’s try to type self-application at type U → U .

?
x : U ⊢ xx : U

· ⊢ λx. x x : U → U
tp/lam

This still does not work, but we can unfold the type of the first occurrence of x so it matches the
type of its argument!

x : U ⊢ x : U
tp/var

x : U ⊢ unfold x : U → U
tp/unfold

x : U ⊢ x : U
tp/var

x : U ⊢ (unfold x) x : U
tp/app

· ⊢ λx. (unfold x) x : U → U
tp/lam

So, lo and behold, if we are willing to insert an unfold we can now type-check self-application.
Curious: can we do the same with the Y combinator? The answer is yes, but let’s be even

more ambitious: let’s translate the whole untyped λ-calculus into our language! We write M for
untyped expressions to distinguish them from the target language expressions e.

Untyped Exps M ::= x | λx.M |M1M2

We try to devise a translation ⌜−⌝ such that

⌜M⌝ : U

for any untyped expression M . To be more precise, assume the untyped expression has free vari-
ables x1, . . . , xn, then we aim for

x1 : U, . . . , xn : U ⊢ ⌜M⌝ : U
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The reason all variables have type U because in the source they stand for an arbitrary untyped
expression. We define

⌜x⌝ = x
⌜λx.M⌝ = fold (λx. ⌜M⌝)
⌜M1M2⌝ = (unfold ⌜M1⌝) ⌜M2⌝

We suggest you go through these definitions and type-check them, keeping in mind the all-
important

U

unfold−→∼=←−
fold

U → U

The type-correctness of this translation means we have a very direct representation of the whole
untyped λ-calculus in our language, using only a single type U (but exploiting recursive types).
Therefore, the untyped λ-calculus is sometimes referred to as the unityped λ-calculus because it can
be represented with a single universal type U .

Since the Y combinator is only a particular untyped λ-expression, we can also translate it into
the target.

However, there is still a fly in the ointment: even though we know the target is well-typed, we
don’t know if it behaves correctly, operationally. Under some definitions it does not. For example,
λx.Ω has no normal form, but ⌜λx.Ω⌝ = fold (λx. ⌜Ω⌝) is a value and does not take a step. We
will discuss at a later point how to bridge this gap, which is not straightforward.

Here is the code we wrote in LAMBDA in lecture. Here $ stands for µ, so that $U. U -> U
stands for µU.U → U . Note that $ binds a type variable, so we could equally well have written
$a. a -> a, but it is easier to ready if we reuse the intended name on the left-hand side of the
definition as the name of the bound variable.

1 type U = $U. U -> U
2 decl lam : (U -> U) -> U
3 decl app : U -> (U -> U)
4

5 defn lam = \f. fold f
6 defn app = \e1. \e2. (unfold e1) e2
7

8 defn omega = lam (\x. app x x)
9 defn Omega = app omega omega

10

11 eval omega_val = omega
12

13 fail eval 100000 Omega_val = Omega

Listing 1: Untyped λ-calculus in LAMBDA

8 Fixed Point Expressions

We have added recursive types that solve recursive type equations. But in order to write all the
programs we want (for example, on natural numbers all the recursive functions) we also need
recursively defined expressions. The Y combinator is not directly available to us in the needed
generality, even though it can be defined at type U . Instead we add a primitive, fix f. e, where f is
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a variable. It is not a value, and it steps by unrolling the fixed point:

fix f. e 7→ [fix f. e/f ]e
step/fix

This “unrolling” is quite similar to unfolding a recursive type, but at the level of expressions.
However, it is independent of recursive types and can be applied in full generality. One particular
example is fix f. f 7→ fix f. f so in this language we can define ⊥ = fix f. f (see Exercise L6.3).
Emboldened by this property, we imagine we might have in general

Γ, f : ⊢ e :

Γ ⊢ fix f. e : τ
tp/fix

but there are still some holes in this typing rule.
We want preservation to hold (progress is trivial to extend, because a fixed point always steps)

so we need that

· ⊢ fix f. e : τ implies · ⊢ [fix f. e/f ]e : τ

From this we can deduce two things: first, e : τ because that is the result of substitution. And,
second, for the substitution property to hold we need that f : τ so we can substitute [fix f. e/f ]e.
Filling in this information:

Γ, f : τ ⊢ e : τ

Γ ⊢ fix f. e : τ
tp/fix

Now we have settled both statics and dynamic and have fixed point expressions available to us.
For example

plus : nat→ (nat→ nat)
plus = fix p. λn. λk. case (unfold n) (l · ⇒ k | r ·m⇒ succ (p m k))

There are a few unpleasant things about fixed point expressions. One is that it is neither a con-
structor nor a destructor of any particular type, but is applicable at any type τ . It thus violates one
of the design principles of our language that we have followed so far. We may interpret this as an
indication that recursion is a fundamental computational principle separate from any particular
typing construct, but this is not a universally held view.

The second one is that in fix f. e the variable f does not stand for a value (like all other variables
x we have used so far) but a expression (we substitute fix f. e for f , and that’s not a value). To
avoid this latter issue, in call-by-value languages sometimes the fixed point expression is limited
to functions, as in fun f(x) = e where e can depend on both x and f .

In LAMBDA we reuse $ to stand for fix for expressions, since it serves the same purpose and
obeys corresponding laws to the type constructors. Below is our sample code using recursive
types and fixed points from lecture.

This code also illustrates general labeled sums which have the form (ℓ1 : τ1) + · · · + (ℓn : τn).
We recover the usual binary sum with ℓ1 = l and ℓ2 = r. The tags or labels ℓi occupy a different
name space and should not be confused with variables. We therefore write them bold in the
mathematical presentation and prefix them with a tick mark (’) in LAMBDA code. The use of
general tagged sums make actual code significantly more readable.
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1 type bool = (’true : 1) + (’false : 1)
2

3 decl true : bool
4 decl false : bool
5

6 defn true = ’true ()
7 defn false = ’false ()
8

9 decl and : bool -> bool -> bool
10 defn and = \b. \c. case b of (’true u => c | ’false u => false)
11 conv and true true = true
12 conv and true false = false
13 conv and false true = false
14 conv and false false = false
15

16 decl and’ : bool -> bool -> bool
17 defn and’ = \b. \c. case b of (’true _ => case c of (’true _ => true | ’false _ => false)
18 |’false _ => false)
19

20 fail conv and = and’
21

22 fail type nat = (’zero : 1) + (’succ : nat)
23

24 type nat = $nat. (’zero : 1) + (’succ : nat)
25

26 decl zero : nat
27 decl succ : nat -> nat
28

29 defn zero = fold ’zero ()
30 defn succ = \n. fold ’succ n
31

32 eval one = succ zero
33

34 decl pred : nat -> nat
35 defn pred = \n. case unfold n
36 of ( ’zero _ => zero
37 | ’succ m => m )
38 eval two = pred (succ (succ one))
39

40 decl plus : nat -> nat -> nat
41 defn plus = $plus. \n. \k. case unfold n
42 of ( ’zero _ => k
43 | ’succ m => succ (plus m k) )
44

45 eval five = plus (plus two one) two
46

47 type list = $list. (’nil : 1) + (’cons : nat * list)
48 decl sum : list -> nat
49 defn sum = $sum. \l. case (unfold l) of ( ’nil _ => zero
50 | ’cons (n, t) => plus n (sum t) )
51

52 type tree = $tree. (’leaf : 1) + (’node : tree * nat * tree)

Listing 2: Sample recursive types in LAMBDA
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Exercises

Exercise 1 Prove adequacy of natural number encodings in type nat.

1. Define a (mathematical) function ⌜n⌝ on natural numbers n such that · ⊢ ⌜n⌝ : nat and
⌜n⌝ value.

2. Define a (mathematical) function ⌞v⌟ on values v with · ⊢ v : nat returning the number
represented by v.

3. Prove that the pair of functions ⌜−⌝ and ⌞−⌟ witness an isomorphism between the usual
(mathematical) natural numbers and closed values of type nat.

Exercise 2 Consider the combinators Y and Z. Here Z, the call-by-value fixed point combinator,
is defined as

Z = λf. (λx. f (λv. x x v)) (λx. f (λv. x x v))

1. Exhibit a difference between Y and Z under that assumption that the pure untyped λ-
calculus follows a call-by-value evaluation strategy.

2. Give the translation ⌜Z⌝ : U into the universal type.

Exercise 3 Consider the type of lists of natural numbers

list = µα. (nil : 1) + (cons : nat× α) ∼= (nil : 1) + (cons : nat× list)

Define the following functions (including plist) file. Feel free to use any definition of nat consistent
with the natural numbers.

(i) nil : list, the empty list.

(ii) cons : nat× list→ list, adding an element to a list. Include at least 1 test.

(iii) append : list→ list→ list, appending two lists. Include at least 1 test.

(iv) reverse : list→ list, reversing a list. Include at least 1 test.

(v) itlist : list→∀β. (nat× β→ β)→ β→ β satisfying

itlist nil [τ ] f c = c
itlist (cons ⟨n, l⟩) [τ ] f c = f ⟨n, itlist l [τ ] f c⟩

where you may take equality to be extensional. This captures iteration over lists, for the
special case where the elements are all natural numbers. You do not need to prove the cor-
rectness of your representation, nor provide any testing.

(vi) Design a type and implementation for primitive recursion over lists, defining a function plist.
Note that we do not ask for primitive recursion over the naturals contained in the list, only
over the list itself. You do not need to prove the correctness of plist, nor provide any testing.
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Exercise 4 It is often intuitive and useful to define types in a mutually recursive way. For example,
we might specify the even and odd natural numbers in unary representation with the following
desired isomorphisms:

even ∼= (zero : 1) + (succ : odd)
odd ∼= () + (succ : even)

Here the empty parenthesis () are used to indicate that (succ : even) is a disjoint sum with just a
single alternative. The only value v of type odd would be fold (succ · v′) with v′ : even. Part of
this task will be to find a representation of such types using the explicit recursive type constructor
µα. τ .

Let the type of bit strings (which, during lecture, we used to represent numbers in binary form)
be defined as

bits ∼= (b0 : bits) + (b1 : bits) + (e : 1)
bits = µα. (b0 : α) + (b1 : α) + (e : 1)

We say a bit string has parity 0 if it has an even number of 0s and 1 if it has an odd number of 1s.
The answer to the questions below should be included in your solution.

(i) Define isomorphisms to be satisfied by two types bits0 and bits1, where the values of type
bits0 are exactly the bit strings with parity 0, and the values of type bits1 are exactly the bit
strings with parity 1.

(ii) Give explicit definitions bits0 = . . . and bits1 = . . . using the recursive type constructor µα. τ
satisfying this specification.

(iii) We now define a type
parity = (p0 : 1) + (p1 : 1)

Define a function parity : bits→ parity that computes the parity of the given bit string.

(iv) Next we define
par0 = (p0 : 1) + ()
par1 = () + (p1 : 1)

It should be the case that

parity v0 7→∗ w0 where w0 : par0 if v0 : bits0
parity v1 7→∗ w1 where w1 : par1 if v1 : bits1

Does your implementation of parity have either following types?

parity : bits0→ par0
parity : bits1→ par1

If not, explain why not. We are not looking for a paraphrase of the error message, but a brief
analysis why the two types above may be difficult to verify for a type-checker.

If yes, explain briefly which feature of your implementation made it possible for the type-
checker to verify both of these properties.

The explanations should be included your solution. You may use the delimited comments
(* <comment> *) for this purpose.
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