Lecture Notes on
Recursion

15-814: Types and Programming Languages
Frank Pfenning

Lecture 2
Thu Aug 28, 2025

1 Introduction

In this lecture we continue our exploration of the A-calculus and the representation of data and
functions on them. We give schematic forms to define functions on natural numbers and give
uniform ways to represent them in the A-calculus. We begin with the schema of iteration and then
proceed the more complex schema of primitive recursion and finally the fully general scheme of
recursion. With the first two we always define total functions from total functions, while with
arbitrary recursion we can define partial functions. This is necessary in order to capture all partial
recursive functions, which are the same as can be computed by Turing machines.

2 Representing Natural Numbers

Finite types such as Booleans are not particularly interesting. When we think about the compu-
tational power of a calculus we generally consider the natural numbers 0,1, 2, We would like a
representation 7 such that they are all distinct. We obtain this by thinking of the natural numbers
as generated from zero by repeated application of the successor function. Since we want our rep-
resentations to be closed we start with two abstractions: one (z) that stands for zero, and one (s)
that stands for the successor function.

0 = As.hz.z

1 = Xs.)z.sz

2 = As.)z.s(s2)

3 = As.)z.5(s(s2))

= As. Az s(...(s 2))
——
n times

In other words, the representation 7 iterates its first argument n times over its second argument
nfz=f"(z)
where f"(z) = f(... (f(z)))

N——
n times

LECTURE NOTES THU AUG 28, 2025

Recursion L2.2

The first order of business now is to define a successor function that satisfies succm =n + 1. As
usual, there is more than one way to define it, here is one (throwing in the definition of zero for
uniformity):

zero = 0 = As.Az.z
succ = An.n+1 = An.As.Az.s(nsz)

We cannot carry out the correctness proof in closed form as we did for the Booleans since there
would be infinitely many cases to consider. Instead we calculate generically (using mathmetical
notation and properties)
succn

= As.X\z.s(mzs)

= As.Az.5(s"(2))

= s Az.s"(2)

= n+l

A more formal argument might use mathematical induction over n.
Using the iteration property we can now define other mathematical functions over the natural
numbers. For example, addition of n and £ iterates the successor function n times on k.

plus = An. A\k.n succ k
You are invited to verify the correctness of this definition by calculation. Similarly:

times = An.\k.n (plus k) zero
exp Ab. Xe. e (times b) (succ zero)

3 The Schema of Iteration

As we saw in the first lecture, a natural number n is represented by a function n that iterates its

first argument n times applied to the second: mgc = g (... (g ¢)). Another way to specify such a
~—
n times

function schematically is

fo0 = ¢

fn+1) = g(fn)
If a function satisfies such a schema of iteration then it can be defined in the A-calculus on Church
numerals as

f=An.ngc

which is easy to verify. The class of function definable this way is fotal (that is, defined on all
natural numbers if ¢ and g are), which can easily be proved by induction on n. Returning to
examples from the last lecture, let’s consider multiplication again.

times 0 k =0
times (n+ 1)k = k+timesnk

This doesn’t exactly fit our schema because k is an additional parameter. That’s usually allowed
for iteration, but to avoid generalizing our schema the times function can just return a function by
abstracting over k.

k.0

Mk K+ timesn k

times 0
times (n+ 1)

LECTURE NOTES THU AUG 28, 2025

Recursion L2.3

We can read off the constant ¢ and the function g from this schema

Ak. zero
Ar. Ak.plusk (rk)

c
g

and we obtain
times = An.n (Ar. \k.plusk (r k)) (Ak. zero)

which is more complicated than the solution we constructed by hand

plus = An.\k.nsucck
times' An. \k.n (plus k) zero

The difference in the latter solution is that it takes advantage of the fact that £ (the second argu-
ment to times) never changes during the iteration. We have repeated here the definition of plus, for
which there is a similar choice between two versions as for times.

4 The Schema of Primitive Recursion

It is easy to define very fast-growing functions by iteration, such as the exponential function, or
the “stack” function iterating the exponential.

exp = Ab.)e.e (times b) (succ zero)
stack Ab. An.n (exp b) (succ zero)

Everything appears to be going swimmingly until we think of a very simple function, namely the
predecessor function defined by

pred 0 =0

pred (n+1) n

You may try for a while to see if you can define the predecessor function, but it is difficult. The
problem is that we have to go from As. A\z.s(...(s2)) to As. Az.s (... %), that is, we have to remove
an s rather than add an s as was required for the successor. One possible way out is to change
representation and define 7 differently so that predecessor becomes easy (see Exercise 3). We
run the risk that other functions then become more difficult to define, or that the representation
is larger than the already inefficient unary representation already is. We follow a different path,
keeping the representation the same and defining the function directly.

We can start by assessing why the schema of iteration does not immediately apply. The prob-

lem is that in
fo = ¢

f(n+1) g (fn)

the function g only has access to the result of the recursive call of f on n, but not to the number n
itself. What we would need is the schema of primitive recursion:

fo = ¢
f(n+1) hn(fn)

where n is passed to h. For example, for the predecessor function we have ¢ = 0 and h = Az. \y. x
(we do not need the result of the recursive call, just n which is the first argument to h).

LECTURE NOTES THU AUG 28, 2025

Recursion L2.4

4.1 Defining the Predecessor Function

Instead of trying to solve the general problem of how to implement primitive recursion, let’s define
the predecessor directly. Mathematically, we write n = 1 for the predecessor (thatis, 0 = 1 = 0 and
n+1+1=n). The key idea is to gain access to n in the schema of primitive recursion by rebuilding
it during the iteration. This requires pairs, a representation of which we will construct shortly.
Our specification then is
pred,n = (n,n = 1)

and the key step in its implementation in the A-calculus is to express the definition by a schema of
iteration rather than primitive recursion. The start is easy:

pred, 0 = (0,0)

For n + 1 we need to use the value of pred,, n. For this purpose we assume we have a function split
where
Split <€1, 62> k=k [ANED)

In other words, split passes the elements of the pair to a “continuation” k. Using split we start as
pred, (n + 1) = split (pred, n) (Az. Ay. ...)

If pred,, satisfies it specification then reduction will substitute n for x and n = 1 for y. From these
we need to construct the pair (n + 1,n) which we can do, for example, with (z + 1, z). This gives us

pred, 0 = (0,0)
pred, (n+1) split (pred,n) (Ax. Ay. (x + 1,2))

predn split (pred,n) (Ax. \y.y)

4.2 Defining Pairs

The next question is how to define pairs and split. The idea is to simply abstract over the contin-
uation itself! Then split isn’t really needed because the functional representation of the pair itself
will apply its argument to the two components of the pair, but if want to write it out it would be
the identity.

(z,y) = M.kzxy

pair A Ay Ak kxy

split Ap.p

4.3 Proving the Correctness of the Predecessor Function
Summarizing the above and expanding the definition of split we obtain

predy, = An.n (Ap. p (Ax. \y. pair (succ x) x)) (pair zero zero)
pred = An.predyn (Az. Ay.y)

Let’s do a rigorous proof of correctness of pred.! For the representation of natural numbers, it is
convenient to assume its correctness in the form

6 gc =g C

n+lge = g(ngc)

'We did not carry out this proof in lecture relying on intuition and testing instead.

LECTURE NOTES THU AUG 28, 2025

Recursion L2.5

Lemma1 pred,n =3 (n,n = 1)
Proof: By mathematical induction on n.

Base: n = 0. Then
pred, 0 =5 0(...) (pairzerozero)

=g pair zero zero By repn. of 0
=5 (0,0) = (0,0 = 1) By repn. of 0 and pairs

Step: n=m+ 1. Then

predym +1 =g m+1(Ap.p (Az. Ay. pair (succx) x)) (pair zero zero)

=5 (Ap.p (Az. Ay. pair (succz) x)) (M (Ap. ...) (...)) By repn. of m + 1
=3 (Ap.p (Ax. \y. pair (succx) z)) (pred, m) By defn. of pred,
=5 (Ap.p (Az. Ay. pair (succz) x)) (m, m = 1) By ind. hyp. onm
=5 (m,m = 1) (A\z. Ay. pair (succx))
=g pair (succm) m By repn. of pairs
=g (m+1,m) By repn. of successor and pairs
=(m+1,(m+1)=1) By defn. of ~
O

Theorem 2 predn=gn 1
Proof: Direct, from Lemma 1.

predn = (An.pred,n(Ax. \y.y)) 7
=g pred,n (Ax. \y.y)

=5 (n,n=1) (Az. \y.y) By Lemma 1
=3 (Ak.km,n=1)(Az. \y.y) By repn. of pairs
=gn=1

O

An interesting consequence of the Church-Rosser Theorem is that if e =g €’ where €’ is in
normal form, then e —7 e

4.4 General Primitive Recursion

The general case of primitive recursion follows by a similar argument. Recall

fo = ¢
f(n+1) = hn(fn)

We begin by defining a function f> specified with
fZ n= (77’7 f TZ)

LECTURE NOTES THU AUG 28, 2025

Recursion L2.6

We can define f; using the schema of iteration.

f20 = (0,c)
fa(n+1) = split(fon)(Az. Ay.(z+1,hzy))
fn = split (fan) (A\z. \y.y)
To put this all together, we implement a function specified with
fo = ¢
f(n+1l) = hn(fn)

with the following definition in terms of c and h:

pair = Ar. Ay . \k.kzy

f2
f

Recall that for the concrete case of the predecessor function we have c= 0 and h = Az. \y. z.

An.n (Ar.r (Ax. Ay. pair (succ x) (h x y))) (pair zero c)
An. fon (Az. \y.y)

5 The Significance of Primitive Recursion

We have used primitive recursion here only as an aid to see how we can define functions in the
pure A-calculus. However, when computing over natural numbers we can restrict the functions
that can be formed in schematic ways to obtain a language in which all functions terminate. Prim-
itive recursion plays a central role in this because if ¢ and g are terminating then so is f formed
from them by primitive recursion. This is easy to see by induction on n.

In this ways we obtain a very rich set of functions but we couldn’t use them to fully simulate
Turing machines, for example.

Furthermore, if we give a so-called constructive proof of a statement in certain formulations
of arithmetic with mathematical induction, we can extract a function that is defined by primitive
recursion. We will probably not have an opportunity to discuss this observation further in this
course, but it is an important topic in the course 15-317/15-657 Constructive Logic.

6 General Recursion

Recall the schemas of iteration and primitive recursion:

/o = c f0 = ¢
fn+1) = g(fn) f(n+1) = hn(fn)

We have already seen how functions defined by iteration and primitive recursion can be repre-
sented in the A-calculus. We can also see that functions defined in this manner are total as long as
¢, g, and h are.

But there are many functions that do not fit such of schema, for two reasons: (1) their natural
presentation differs from the rigid schema (even if there actually is one that fits it), and (2) they
simply fall out of the class of functions. An example of (1) is below; an example of (2) would be
a function simulating a Turning machine. Since setting up a representation of Turing machines is
tedious, we just show simple examples of (1).

LECTURE NOTES THU AUG 28, 2025

Recursion L2.7

Let’s consider the subtraction-based specification of a gcd function for the greatest common
divisor of strictly positive natural numbers a,b > 0.

gcdaa = a
gedab ged (a-b)b ifa>b
gedab geda (b—a) ifb>a

Why is this correct? First, the result of gcd a b is a divisor of both a and b. This is clearly true in the
first clause. For the second clause, assume c is a common divisor of ¢ and b. Then there are n and &
such thata =nxcand b=kxc. Then a-b = (n-k) xc (defined because a > b and therefore n > k) so
cstill divides both a—b and b. In the last clause the argument is symmetric. It remains to show that
the function terminates, but this holds because the sum of the arguments to gcd becomes strictly
smaller in each recursive call because a, b > 0.

While this function looks simple and elegant, it does not fit the schema of iteration or primitive
recursion. The problem is that the recursive calls are not just on the immediate predecessor of an
argument, but on the results of subtraction. So it might look like

fn=hn(f(gn))

but that doesn’t fit exactly, either, because the recursive calls to gcd are on different functions in
the second and third clauses.
So, let’s be bold! The most general schema we might think of is

f=nf

which means that in the right-hand side we can make arbitrary recursive calls to f. For the gcd,
the function ~ might look something like this:

h=MXg.Xa. \b. if (a=0)a
(if (a>b) (g(a=b)b)
(ga(b-a)))

Here, we assume functions for testing = y and = > y on natural numbers, for subtraction = -y
(assuming z > y) and for conditionals.

The interesting question now is if we can in fact define an f explicitly when given h so that
it satisfies f = h f. We say that f is a fixed point of h, because when we apply h to f we get f
back. Since our solution should be in the A-calculus, it would be f =g h f. A function f satisfying
such an equation may not be uniquely determined. For example, the equation f = f (so, h = Az.x)
is satisfied by every function f. On the other hand, if % is a constant function such as A\z.I then
f=p (A\z.I) f =5 I has a simple unique solution. For the purpose of this lecture, any function that
satisfies the given equation is acceptable.

If we believe in the Church-Turing thesis, then any partial recursive function should be repre-
sentable on Church numerals in the A-calculus, so there is reason to hope there are explicit repre-
sentations for such f. The answer is given by the so-called Y combinator.? Before we write it out,
let’s reflect on which laws Y should satisfy? We want that if f =Y h and we specified that f = h f,
sowe get Y h = h (Y h). We can iterate this reasoning indefinitely:

Yh=h(Yh)=h(h(Yh))=h(h(h(Yh)))=...

*For our purposes, a combinator is simply a A-expression without any free variables.

LECTURE NOTES THU AUG 28, 2025

Recursion L2.8

In other words, Y must iterate its argument arbitrarily many times.
The ingenious solution deposits one copy of i and the replicates Y h.

Y =M. (Az.h(zz))(Az.h(xz))

Here, the application x x takes care of replicating Y h, and the outer application of i in h (x x)
leaves a copy of h behind. Formally, we calculate

Yh =3 (Az.h(zz))(Az.h(zz))
=3 h((Az.h(zz))(Az.h(z2)))
=5 h(Y'h)

In the first step, we just unwrap the definition of Y. In the second step we perform a 3-reduction,
substituting [(Az. h (zz))/x] h (). In the third step we recognize that this substitution recreated
a copy of Y h.

You might wonder how we could ever get an answer since

Y h=3 h(Yh) =5 h(h(Yh)) = h(h(h(Y h)))=...

Well, we sometimes don’t! Actually, this is important if we are to represent partial recursive func-
tions which include functions that are undefined (have no normal form) on some arguments. Re-
consider the specification f = f as a recursion schema. Then i = A\g. g and

Yh=Y (Ag.g9) =3 (Az.(Ag.g) (zz)) (Ax.(Ag.9) (xx)) =3 (A\z.xx) (A\e. xx)

The term on the right-hand side here (called (2) has the remarkable property that it only reduces
to itself! It therefore does not have a normal form. In other words, the function f =Y (Ag.g) = Q
solves the equation f = f by giving us a result which always diverges.

We do, however, sometimes get an answer. Consider, for example, a case where f does not call
itself recursively at all: f = An.succ n. Then hy = Ag. An.succ n. And we calculate further

Yhy = Y (\g.An.succn)
=5 (Az.(Ag. An.succn) (xx)) (Az. (Ag. An.succ n) (zz))
=3 (Az.(An.succn)) (Az. (An.succn))
=g An.succn

So, fortunately, we obtain just the successor function if we apply [S-reduction from the outside in.
It is however also the case that there is an infinite reduction sequence starting at Y hy. By the
Church-Rosser Theorem (Theorem 3) this means that at any point during such an infinite reduc-
tion sequence we could still also reduce to An.succ n. A remarkable and nontrivial theorem about
the A-calculus is that if we always reduce the left-most/outer-most redex (which is the first ex-
pression of the form (Az.e;) ez we come to when reading an expression from left to right) then we
will definitely arrive at a normal form when one exists. And by the Church-Rosser theorem such
a normal form is unique (up to renaming of bound variables, as usual).

7 Defining Functions by Recursion

As a simpler example than gcd, consider the factorial function, which we deliberately write using
general recursion rather than primitive recursion.

LECTURE NOTES THU AUG 28, 2025

O ® N G e W N =

_ =
= o

Recursion L2.9

factn =if n =0 then 1 else n * fact(n - 1)
To write this in the A-calculus we first define a zero test if0 satisfying
if0 M: c
if0n+lcd=d
which is a special case of if iteration and can be written, for example, as
if0 = n. Ae. \d.n (K d)c
Eliminating the mathematical notation from the recursive definition of fact get the equation
fact = An.if0 n (succ zero) (times n (fact (predn)))

where we have already defined succ, zero, times, and pred. Of course, this is not directly allowed
in the A-calculus since the right-hand side mentions fact which we are just trying to define. The
function hf,et which will be the argument to the Y combinator is then

Ptact = Af. An.if0 n (succ zero) (times n (f (predn)))
and
fact =Y hgact

We can write and execute this now in LAMBDA notation (see file rec.lam)

defn I = \x. x
defn K \x. \y. x
defn Y = \h. (\x. h (x x)) (\x. h (x x))

defn if0 = \n. \c. \d. n (K d) c

defn h_fact = \f. \n. 1if0 n (succ zero) (times n (f (pred n)))
defn fact = Y h_fact

norm _120 fact _5
norm _720 = fact (succ _5)

Listing 1: Recursive factorial in LAMBDA

8 A Few Somewhat More Rigorous Definitions

We write out some definitions for notions from the first two lectures a little more rigorously.

A-Expressions. First, the abstract syntax.

Variables z
Expressions e == Az.el|ejez|x

Az. e binds x with scope e. In the concrete syntax, the scope of a binder Az is as large as possi-
ble while remaining consistent with the given parentheses so y (Az.z z) stands for y (Az. (z z)).
Juxtaposition e; es is left-associative so e; ez e3 stands for (e e2) e3.

We define FV(e), the free variables of e with

FV(z) = {«}
FV(Az.e) = FV(e)\{z}
FV(€1 62) = FV(el) @] FV(QQ)

LECTURE NOTES THU AUG 28, 2025

http://www.cs.cmu.edu/~fp/courses/15814-f25/lectures/02-recursion/rec.lam

Recursion L2.10

Renaming. Proper treatment of names in the A-calculus is notoriously difficult to get right, and
even more difficult when one reasons about the A-calculus. A key convention is that “variable names
do not matter”, that is, we actually identify expressions that differ only in the names of their bound
variables. So, for example, \x. A\y.x z = A\y. Ax.y z = Au. A\w. u z. The textbook defines fresh renam-
ings [Harper, 2016, pp. 8-9] as bijections between sequences of variables and then a-conversion
based on fresh renamings. Let’s take this notion for granted right now and write e =, €’ if e and
e’ differ only in the choice of names for their bound variables and this observation is important.
From now on we identify e and ¢’ if they differ only in the names of their bound variables, which
means that other operations such as substitution and S-conversion are defined on a-equivalence
classes of expressions.

Substitution. We can now define substitution of e’ for x in e, written [e’/z]e, following the struc-
ture of e.

[e'/x]x = €

[e'/z]y =y fory ¢«
[e'/z](Ny.e) = Ay.[ée[z]e provided y ¢ FV(e")
[e'/z](ere2) = ([¢'/z]er) ([¢'/x]e2)

This looks like a partial operation, but since we identify terms up to a-conversion we can always
rename the bound variable y in [¢//x]()y. €) to another variable that is not free in ¢’ or e. Therefore,
substitution is a total function on a-equivalence classes of expressions.

Now that we have substitution, we also characterize a-conversion as Az.e =, \y.[y/z]e pro-
vided y ¢ FV(e) but as a definition it would be circular because we already required renaming to
define substitution.

Equality. We can now define - and n-conversion. We understand these conversion rules as
defining a congruence, that is, we can apply an equation anywhere in an expression that matches
the left-hand side of the equality. Moreover, we extend them to be reflexive, symmetric, and
transitive so we can write e =g €’ if we can go between e and e’ by multiple steps of S-conversion.

p-conversion (Az.e)e’ =g [€'[x]e
n-conversion Az.ex = e provided x ¢ FV(e)

Reduction. Computation is based on reduction, which applies 3-conversion in the left-to-right
direction. In the pure calculus we also treat it as a congruence, that is, it can be applied anywhere
in an expression.

p-reduction (Az.e)e’ —p [€'/z]e

Sometimes we like to keep track of length of reduction sequences so we write e —7 ¢’ if we can
go from e to ¢’ with n steps of 3-reduction, and e — ¢’ for an arbitrary n (including 0).

Confluence. The Church-Rosser property (also called confluence) guarantees that the normal
form of a A\-expression is unique, if it exists.

Theorem 3 (Church and Rosser [1936]) If e —>E e1 and e —>; ey then there exists an e’ such that
er1 —j e’ and eq —% e

LECTURE NOTES THU AUG 28, 2025

Recursion L2.11

Exercises

Exercise 1 Analyze whether B I f z f and, if so, whether it requires only S-conversion or /7-
conversion.

Exercise 2 Once we can define each individual instance of the schemas of iteration and primitive recursion,
we can also define them explicitly as combinators.
Define combinators iter and primrec such that

(i) The function iter g c satisfies the schema of iteration
(ii) The function primrec h c satisfies the schema of primitive recursion

You do not need to prove the correctness of your definitions.

Exercise 3 One approach to representing functions defined by the schema of primitive recursion
is to change the representation so that 72 is not an iterator but a primitive recursor.

0 = AS.)\z.z

n+l = As.Xz.sm(nsz)

1. Define the successor function succ (if possible) and show its correctness.
2. Define the predecessor function pred (if possible) and show its correctness.

3. Explore if it is possible to directly represent any function f specified by a schema of primitive
recursion, ideally without constructing and destructing pairs.

Exercise 4 The unary representation of natural numbers requires tedious and error-prone count-
ing to check whether your functions (such a factorial, Fibonacci, or greatest common divisor in the
exercises below) behave correctly on some inputs with large answers. Fortunately, you can exploit
that the LAMBDA implementation counts the number or reduction steps for you and prints it in
decimal form!

(i) We have
T SUCC Zero —>E n

because 7 iterates the successor function n times on 0. Run some experiments in LAMBDA
and conjecture how many leftmost-outermost reduction steps are required as a function of n.
Note that only S-reductions are counted, and not replacing a definition (for example, zero by
As. Az. z). We justify this because we think of the definitions as taking place at the metalevel,
in our mathematical domain of discourse.

(ii) Prove your conjecture from part (i), using induction on n. It may be helpful to use the
mathematical notation f¥c to describe a A-expression generated by f’c = ¢ and f**lc =
f(f*c) where f and c are M-expressions. For example, i = As.\z.5" z or succ® zero =

succ (succ (succ zero)).

Exercise 5 Define the following functions in the A-calculus using the LAMBDA implementation.
Here we take “=” to mean =g, that is, 3-conversion.

You may use all the functions in nat.lam as helper functions. Your functions should evidently
reflect iteration, primitive recursion and pairs. In particular, you should avoid the use of the Y
combinator which will be introduced in Lecture 3.

Provide at least 3 test cases for each function.

LECTURE NOTES THU AUG 28, 2025

http://www.cs.cmu.edu/~fp/courses/15814-f21/lectures/02-primrec/nat.lam

Recursion L2.12

(i) if0 (definition by cases) satisfying the specification

if00zy =
if0k+laxy = y
(ii) even satisfying the specification
even 2k = true
even2k+1 = false
(iii) half satisfying the specification
half 2k = &
half 2k+1 = &k

Exercise 6 The Lucas function (a variant on the Fibonacci function) is defined mathematically by

lucas 0 = 2
lucas 1 =1
lucas (n+2) = lucasn +lucas (n+1)

Give an implementation of the Lucas function in the A-calculus via the LAMBDA implementation.
You may use the functions from nat.lam as helper functions, as well as those from Exercise 5.
Your functions should evidently reflect iteration, primitive recursion and pairs. In particular, you
should avoid the use of the Y combinator which will be introduced in Lecture 3.
Test your implementation on inputs 0, 1, 9, and 11, expecting results 2, 1, 76, and 199. Include
these tests in your code submission, and record the number of 5-reductions used by your function.

Exercise 7 We can define binomial coefficients bin n £ by the following recurrence:

bin 0 k& =1
bin (n +1) 0 1
bin (n+1) (k+1) binn k+binn (k+1)

Give an implementation of the bin function in the A-calculus via the LAMBDA implementation.
You may use the functions from nat.lam as helper functions, as well as those from Exercise 5.
Your functions should evidently reflect iteration, primitive recursion and pairs. In particular, you
should avoid the use of the Y combinator which will be introduced in Lecture 3.
Provide at least 5 test cases.

Exercise 8 Give an implementation of the factorial function in the A-calculus as it arises from the
schema of primitive recursion. How many g-reduction steps are required for factorial of 0,1, 2, 3,
4,5 in each of the two implementations?

Exercise 9 The Fibonacci function is defined by

fib 0 =0
fib1 =1
fib(n+2) = fibn+fib(n+1)

Give two implementations of the Fibonacci function in the A-calculus (using the LAMBDA imple-
mentation). You may use the functions in (see file rec.lam).

LECTURE NOTES THU AUG 28, 2025

http://www.cs.cmu.edu/~fp/courses/15814-f21/lectures/02-primrec/nat.lam
http://www.cs.cmu.edu/~fp/courses/15814-f21/lectures/02-primrec/nat.lam
http://www.cs.cmu.edu/~fp/courses/15814-f25/lectures/02-recursion/rec.lam

Recursion L2.13

(i) Exploit the idea behind the encoding of primitive recursion using pairs to give a direct im-
plementation of fib without using the Y combinator.

(if) Give an implementation of fib using the ¥ combinator.

Test your implementation on inputs 0, 1, 9, and 11, expecting results 0, 1, 34, and 89. Which of the
two is more “efficient” (in the sense of number of S-reductions)?

Exercise 10 Recall the specification of the greatest common divisor (gcd) from this lecture for nat-
ural numbers a,b > 0:

gcdaa = a
gedab = ged(a-b)b ifa>b
gcdab = geda(b-a) ifb>a

We don’t care how the function behaves if a = 0 or b = 0.

Define gcd as a closed expression in the A-calculus over Church numerals. You may use the
Y combinator we defined, and any other functions like succ, pred, and you should define other
functions you may need such as subtraction or arithmetic comparisons.

Also analyze how your function behaves when one or both of the arguments a and b are 0.

References

Alonzo Church and]J.B. Rosser. Some properties of conversion. Transactions of the American Math-
ematical Society, 39(3):472-482, May 1936.

Robert Harper. Practical Foundations for Programming Languages. Cambridge University Press,
second edition, April 2016.

LECTURE NOTES THU AUG 28, 2025

	Introduction
	Representing Natural Numbers
	The Schema of Iteration
	The Schema of Primitive Recursion
	Defining the Predecessor Function
	Defining Pairs
	Proving the Correctness of the Predecessor Function
	General Primitive Recursion

	The Significance of Primitive Recursion
	General Recursion
	Defining Functions by Recursion
	A Few Somewhat More Rigorous Definitions

