
Mini Projects
Advanced Control

15-814: Types and Programming Languages
Frank Pfenning

Due Thursday, December 2, 2021
250 points

Please pick one among the following two mini-projects and hand in your PDF writeup and
code in Gradescope by 11:59 pm on the due date. You may do this project by yourself or team up
with a partner. We strongly recommend partnering up because it helps you discuss approaches
and provides another person who can look over your ideas.

All submitted work (both written and code) should include all partners’ names, an indication
of which mini project the work is for, and any applicable citations. As with homework, you are
allowed to use online resources such as papers, technical reports, online course notes, etc. but you
must give credit to the sources you consult.

Your PDF report should consist of the following sections:

1. Executive summary - Describe the key points of what you discovered. This is also where you
should cite outside sources you consulted.

2. Answers to the tasks - Follow all instructions in the tasks. If you get creative, also briefly
mention the intuitive idea.

3. Debriefing - Briefly review what you found the most difficult (or what you were unable to do).
Also include your advice for future iterations of the problem you worked on.

Your code should consist of a single *.cbv file with the appropriate modifications made to the K
machine meta-interpreter and any required tests/experiments.

On Gradescope there will be a pair of assignments (one for written work and one for code) for
each of the two mini projects. Please have one person submit your work on Gradescope to the
proper pair of assignments, and ensure that all partners are added to that submission. If you are
unfamiliar with how to add partners to a Gradescope submission, Gradescope has made this useful
video: https://youtu.be/rue7p_kATLA?t=38. You may ignore the pair of assignments for
the mini project you have not chosen.

1 Call/cc

In this mini-project we explore the advanced control construct callcc, which is short for “call-
with-current-continuation”. With call/cc we can implement various patterns of control such as
nondeterministic choice, coroutines, or backtracking search at a high level of abstraction.

ASSIGNMENT MP DUE THURSDAY, DECEMBER 2, 2021
250 POINTS

https://youtu.be/rue7p_kATLA?t=38


Advanced Control HWMP.2

We introduce a new type ¬τ which is inhabited by continuations that accept values of type τ .1

Its introduction form is what makes it odd: it has the form callcc k. e, binding the variable k with
scope e. When executing callcc k. e we substitute the current continuation for k in e and evaluate
the result. The current continuation captures whatever remains to be done after the evaluation of
callcc until the completion of the whole program. We cannot express this behavior directly in the
small-step dynamics e 7→ e′ since we do not have a representation of the continuation available,
but we can represent it easily in the K machine from Lecture 12

K B callcc k. e 7→ K B [K/k]e

If we want to escape our local control context we can throw a value to a continuation. The construct is
throw e1 e2 where e1 evaluates to a continuationK1, e2 evaluates to a value v2, and we pass v2 toK1.
Note that continuations K cannot appear directly in the program syntax before evaluation—they
only originate from the callcc construct. Also, continuations K are values.

K value
val/cont

Task 1 Write out the remaining rules for the dynamics of callcc and throw in the K machine,
assuming call-by-value and left-to-right evaluation order. Your rules should be deterministic.

Task 2 Here are some sample expressions using callcc. Compute their value using the stepping
rules for callcc. You do not need to show the computations, just the final values if they exist. We
assume the usual definitions of unary natural numbers, including zero and succ.

(i) callcc k. throw k (succ zero)
(ii) callcc k. succ (throw k zero)
(iii) succ (callcc k. throw k zero)
(iv) callcc k. (throw (throw k zero) (throw k (succ zero))

capture = λu. callcc k. throw k (now · k)

invoke = λm. case m (now · k ⇒ throw k (now · k))

(v) invoke (capture 〈 〉)

You may ignore the types for now, but they will be relevant in next task.

Task 3 Now provide the typing rules for callcc k. e and throw e1 e2 where continuations accepting
a value of type τ have type ¬τ . Since these are static typing rules, applied before expressions are
evaluated, they cannot encounter a continuation K, only variables k standing for continuations.

All examples in Task 2 should be well-typed (but you don’t have to show any typing deriva-
tions).

Task 4 Provide valid types for the expressions (i)–(v) in Task 2. This should include separate types
for functions capture and invoke. Feel free to make type definitions if such a shorthand would be
convenient. Your types do not need to be most general.

1This not should be confused with the proposition ¬A (the negation of A) although it turns out the two are related in
classical logic (see Tasks 10 and 11)

ASSIGNMENT MP DUE THURSDAY, DECEMBER 2, 2021
250 POINTS

http://www.cs.cmu.edu/~fp/courses/15814-f21/www/lectures/12-kmachine.pdf


Advanced Control HWMP.3

Task 5 Since expressions may contain actual continuations K at runtime, devise a new judgment
for typing expressions at runtime. Let’s call it the dynamic typing judgment.2 You only need to show
the rules for callcc, throw, and continuations K, and explain how the rules for the static typing
judgment for other forms of expressions may need to be updated. For concreteness, show the
modified dynamic typing rules for eager pairs.

Your new rules will need to refer to the judgment K ÷ τ ⇒ σ (or an updated form of it) since
continuations may be embedded in expressions at runtime. You should also extend this judgment
to encompass the new kind of continuations you had to introduce in Task 1.

Task 6 Extend the canonical forms theorem with a case for types ¬τ . You do not need to prove it.
Does it refer to the static typing judgment or the dynamic typing judgment. Why?

Task 7 State the preservation theorem for the K machine and the structure of its proof (by induction
or cases on which judgment or construction). Then show all cases in the proof relevant to the
transitions rules for callcc and throw. If you need any lemmas you should state them carefully, but
you do not need to prove them.

Task 8 State the progress theorem for the K machine and the structure of its proof (by induction or
cases on which judgment or construction). You do not need to prove it or show any cases, but you
should convince yourself that it is true because this is an important test for the correctness of your
rules for typing and evaluation.

Task 9 Define a function andalso : ¬bool→bool→bool→0 where andalso K e1 e2 passes the result of
x∧y to K, “short-circuiting” the conjunction as with the language C’s && operation. In other words,
e2 should not evaluated if e1 evaluates to false even though we are in a call-by-value language.

Then define a function orelse : ¬bool→ bool→ bool→ 0 in an analogous fashion, modeling C’s
short-circuiting disjunction ||.

Task 10 Under the Curry-Howard isomorphism, the proposition A ∨ ¬A is interpreted as the type
τ + (τ → 0). Show that with callcc and without using recursion or recursive types we can define a
closed term for every instance of the axiom A ∨ ¬A. This can be provided uniformly as a closed
term of type ∀α. α + (α→ 0). This means that with only callcc (and excluding recursion) we can
find a closed term for every proof in classical propositional natural deduction (which uses excluded
middle).

Task 11 Prove the other direction, namely, that with callcc (and without recursion) every closed
expression of type τ corresponds to some proof in classical propositional logic. Together with the
previous task, we will then have established two-thirds of Curry-Howard isomorphism for classical
propositional logic, where the only missing component is a connection between proof reduction
and rules for computation.
[Hint: It may be helpful to understand which axioms your typing rules for callcc and throw corre-
spond to.]

Task 12 Extend our implementation of the K machine from Lecture 123 in LAMBDA with callcc and
throw. Also, encode your answers in Tasks 2, 9, 10, and 11 in this implementation and verify their
correctness or test them on small inputs to the extent possible.

2This name does not imply that you need to check types as the program executes, just that we need to type dynamic
artifacts.

3We provide a slightly updated version with the mini-project handout file.

ASSIGNMENT MP DUE THURSDAY, DECEMBER 2, 2021
250 POINTS



Advanced Control HWMP.4

Task 13 Differentiate your static typing rules from Task 3 into bidirectional typing rules for callcc
and throw. Your rules should not require any type annotations in the expressions.

Task 14 We can use callcc and throw to model the simple form of exceptions using the try/catch
and raise expressions from Assignment 7, Task 7.

(i) Give a translation from the expressions try/catch and raise to expressions using callcc and
throw. Also show the cases of the translation for variables, and those relating to eager pairs.

(ii) Prove that if the source expression is well-typed, so is the result of the translation.

(iii) State a correctness theorem for the dynamics of terminating computations. This should include
the case that a raised exception propagates to the initial continuation ε in the K machine. You
do not need to prove this theorem, but you should convince yourself that it holds.

2 Quotation

In this mini-project we explore a statically typed version of quotation in a programming language.
This can be used, for example, for meta-programming, explicit staging of computation, runtime
code generation, or inlining to improve efficiency.

We introduce a new type �τ whose values are quoted expressions of type τ , written as quote e.
We consider quote e to be observable regardless of the type of e. For example, after evaluation of
the expression (λx. x) (quote (λx. λy. x)) the user should be able to see the value quote (λx. λy. x),
possibly with some renaming of the bound variables. On the other hand, we do not want to prevent
the usual compilation of functions, and a value of type nat→ nat should remain opaque.

In order to maintain this distinction we have two different kinds of variables: Our usual
variables ranging over values, and a new kind ranging over observable expressions which we
will call expression variables. We still write x : τ for a usual variable x, where x may or may not be
observable, depending on the type τ . However, for an expression variable u, we write u :: τ 4, and u
is always observable independently of type τ . In order to prevent opaque, unobservable values
from infecting our observable quoted expressions, our typing rule for quotation is

Γ|:: ` e : τ

Γ ` quote e : �τ
tp/quote

Here, Γ|:: is the restriction of Γ to declarations of the form α type and u :: τ . We can define it with

(·)|:: = ·
(Γ, x : τ)|:: = Γ|::
(Γ, α type)|:: = Γ|::, α type
(Γ, u :: τ)|:: = Γ|::, u :: τ

The destructor for quote is a new form of case expression, case e (quote u⇒ e′). If we have general
pattern matching, quote u is a new pattern to match against, binding u to the quoted expression.

Task 1 Give the remaining typing rules for the extension of our call-by-value language with
quotation.

4The use of “::” is unrelated to their use in process typing.

ASSIGNMENT MP DUE THURSDAY, DECEMBER 2, 2021
250 POINTS

http://www.cs.cmu.edu/~fp/courses/15814-f21/www/misc/hw07.pdf


Advanced Control HWMP.5

When writing types, we assume � is a prefix operator with higher precedence that other type
constructors, so that �τ → τ means (�τ)→ τ and �1×�1 means (�1)× (�1).

Task 2 For each of the following closed expressions, give a type or indicate that it cannot be typed.
The type does not need to be most general, and you do not need to show any typing derivations.

(i) quote (λx. x)

(ii) λx. quote x

(iii) quote (Λα. λx. x)

(iv) Λα. quote (λx. x)

(v) λx.case x (quote u⇒ 〈u, quote u〉)

We extend the value judgment for closed expressions with the rule

quote e value
val/quote

Task 3 Extend the stepping judgment e 7→ e′ to account for quote and case/quote.

Task 4 State the preservation theorem and the structure of its proof (by induction or cases on which
judgment or construction). Then show the new cases relevant to quotation. If you need any lemmas
you should state them carefully, but you do not need to prove them.

Task 5 Extend the canonical form theorem to account for quotation. You do not need to prove it.

Task 6 State the progress theorem and the structure of its proof (by induction or cases on which
judgment or construction). Then show the new cases relevant to quotation. If you need any lemmas
you should state them carefully, but you do not need to prove them.

Task 7 Under the Curry-Howard isomorphism, �τ corresponds to propositions �A from an
intuitionistic version of the modal logic S4. This logic is characterized by the rule of necessitation (for
a judgment ` A with no hypotheses rather than in natural deduction)

` A true
` �A true

Nec

and the following axioms for �with the corresponding type on the right.

` �A⊃A ∀α.�α→ α
` �A⊃��A ∀α.�α→��α
` �(A⊃B)⊃ (�A⊃�B) ∀α.∀β.�(α→ β)→ (�α→�β)

Give proof term assignments for Nec and the three characteristic axioms.

Task 8 For each of the following propositions in intuitionistic S4 either provide a proof term for the
corresponding type, or indicate you believe no such proof exists. Like for the axioms, the question
is if these propositions are true parametrically in A and B.

ASSIGNMENT MP DUE THURSDAY, DECEMBER 2, 2021
250 POINTS



Advanced Control HWMP.6

(i) (�A⊃�B)⊃�(A⊃B)

(ii) �(A ∧B)⊃ (�A ∧�B)

(iii) (�A ∧�B)⊃�(A ∧B)

(iv) �(A ∨B)⊃ (�A ∨�B)

(v) (�A ∨�B)⊃�(A ∨B)

(vi) �⊥⊃⊥

(vii) ⊥⊃�⊥

Task 9 Quotation can be used to generate potentially more efficient code at runtime because we can
specialize code to some known inputs. In this task we explore this option with a simple example.

nat = µα. (zero : 1) + (succ : α)

zero : nat
zero = fold zero · 〈 〉

succ : nat→ nat
succ = λn. fold succ · n

(i) Write the function plus : nat→ nat→ nat

(ii) Restage the function to have type plus′ : nat→�(nat→ nat). This function will take a natural
number and generate a source expression for a function that takes the second argument to
complete the addition.

(iii) Show the (observable!) result of plus′ 2.

(iv) Show how you can use β-value reduction (that is, replacing (λx. e) v by [v/x]e) as an optimiza-
tion to obtain a more efficient source expression for plus′ 2.

Task 10 In general, we cannot prove A⊃�A and, correspondingly, there should be no proof term
for ∀α. α→�α. That’s because when the type α is negative (that is, its values are not observable
like nat→ nat) we cannot build a source expression from the given value.

However, it is possible for some types. Write a function rep : nat→ �nat such that rep v 7→∗
quote v.

Task 11 We now generalize the observation from the previous task. Consider the purely positive
(and therefore observable) types τ+, where σ is an arbitrary (not necessarily positive) type.

τ+ ::= τ+1 × τ
+
2 | 1 | τ

+
1 + τ+2 | 0 | µα+. τ+ | α+ | �σ

Specify a translation from types into expressions in our call-by-value language such that reify(τ+) =
e with · ` e : τ+ → �τ+ and e v 7→∗ quote v for every value v : τ+. As a function of τ+, is reify
parametric in τ+?

ASSIGNMENT MP DUE THURSDAY, DECEMBER 2, 2021
250 POINTS



Advanced Control HWMP.7

Task 12 Extend the definition of logical equality with an additional clause for v ∼ v′ ∈ [�τ ]. With
your definition, can we prove that quote ((λx. x) 〈 〉) ∼ quote 〈 〉 ∈ [�1]? Either way, defend your
definition and argue why this relation should or should not hold.

Task 13 Under your definition of logical equality from the previous task, are the types �τ and
��τ isomorphic in the sense that there are functions forth and back such that the two compositions
forth◦back and back◦ forth are logically equal to the identity? If yes, prove it. If not, can you construct
a counterexample for a specific τ?

Task 14 Extend our implementation of the K machine from Lecture 12 in LAMBDA with quote and
case/quote. Because of the structure of the representation (modeling binding in the object language
by a function in the meta-language), you cannot always observe the structure of quoted expressions
even though our design implies you should be able to.

Implement the examples from Tasks 7, 8, 9, and 10 as examples in your K machine and execute
them on small inputs to examine their behavior to the extent possible.

To make this easier, the version of the K machine with the mini-project distribution already
defines some constructors that make it marginally less cumbersome than using the primitives.

Task 15 Assume the meta-language (that is, the language of the interpreter) also had quote and
pattern matching against values quote e. Show how you could modify the meta-interpreter’s
representation of expressions and evaluation function so that values that had type �τ in the object
language (that is, the language being interpreted) always could be observed, or argue that it is still
not possible.

ASSIGNMENT MP DUE THURSDAY, DECEMBER 2, 2021
250 POINTS


	Call/cc
	Quotation

