
Assignment 5
Mutual Recursion

15-814: Types and Programming Languages
Frank Pfenning & David M Kahn

Due Thursday, October 7, 2021
65 points

You should hand in a single file

• hw05.cbv with the code, where the solutions to the problems are clearly marked and aux-
iliary code (either from lecture or your own) is included so it passes the LAMBDA imple-
mentation, version v0.9. Auxiliary explanations should be included in the form of delimited
comments (* <comment> *).

Make sure to install the latest of LAMBDA (v0.9) or run it on linux.andrew.cmu.edu. You
can find instructions on the software page on the course website, in the same place as before.
Without this new version, you will not be able to test your code using conv in *.cbv files.

1 Type Isomorphisms

Task 1 (L9.1, 25 points) In hw05.cbv, implement the functions ForthX and BackX witnessing the
each of the following isomorphisms X (where X ranges over i, ii, etc). You do not need to prove
that they constitute an isomorphism, but you must test them to a certain extent. Details on the
requirements for implementing and testing are given below.

(i) 0→ τ ∼= 1

(ii) 1→ τ ∼= τ

(iii) 2→ τ ∼= τ × τ

(iv) τ × (σ + ρ) ∼= (τ × σ) + (τ × ρ)

(v) (σ + ρ)→ τ ∼= (σ→ τ)× (ρ→ τ)

For this task, we ask that you restrict yourself to the pure language of Lecture 9 without recursion,
where every function is terminating. Additionally, LAMBDA requires that all type variables are
bound in *.cbv files. For example, in part (ii) you should have functions ∀α. (1→ α)→ α and
∀α. α→ (1→ α).

For the purpose of concrete testing, we recommend instantiating the type variables with 1 + 1
(also known as bool) so you can observe the outcome of the test. Provide at least one test per per

ASSIGNMENT 5 DUE THURSDAY, OCTOBER 7, 2021
65 POINTS

https://www.cs.cmu.edu/~fp/courses/15814-f21/software.html


Mutual Recursion HW5.2

composition (so two per isomorphism) that demonstrate the composition behaves as the identity.
These tests should use the conv declaration so that processing your file in lambda should fail if
there is a counterexample. LAMBDA can’t directly compare functions since their structure is not
observable, so you have to provide some concrete inputs. We also ask that you group each test with
the implementation it is testing, so that it can be easily identified when grading.

2 Programming with Lists

Task 2 (L10.3, 15 pts) Consider the type of lists of natural numbers

list = µα. (nil : 1) + (cons : nat× α) ∼= (nil : 1) + (cons : nat× list)

Define the following functions (including plist) in your hw05.cbv file. Feel free to use any definition
of nat consistent with the natural numbers.

(i) nil : list, the empty list.

(ii) cons : nat× list→ list, adding an element to a list. Include at least 1 test.

(iii) append : list→ list→ list, appending two lists. Include at least 1 test.

(iv) reverse : list→ list, reversing a list. Include at least 1 test.

(v) itlist : list→∀β. (nat× β→ β)→ β→ β satisfying

itlist nil [τ ] f c = c
itlist (cons 〈n, l〉) [τ ] f c = f 〈n, itlist l [τ ] f c〉

where you may take equality to be extensional. This captures iteration over lists, for the special
case where the elements are all natural numbers. You do not need to prove the correctness of
your representation, nor provide any testing.

(vi) Design a type and implementation for primitive recursion over lists, defining a function plist.
Note that we do not ask for primitive recursion over the naturals contained in the list, only
over the list itself. You do not need to prove the correctness of plist, nor provide any testing.

3 Mutually Recursive Types

Task 3 (L10.4, 25 points) It is often intuitive and useful to define types in a mutually recursive way.
For example, we might specify the even and odd natural numbers in unary representation with the
following desired isomorphisms:

even ∼= (zero : 1) + (succ : odd)
odd ∼= () + (succ : even)

Here the empty parenthesis () are used to indicate that (succ : even) is a disjoint sum with just a
single alternative. The only value v of type odd would be fold (succ · v′) with v′ : even. Part of this
task will be to find a representation of such types using the explicit recursive type constructor µα. τ .

ASSIGNMENT 5 DUE THURSDAY, OCTOBER 7, 2021
65 POINTS



Mutual Recursion HW5.3

Let the type of bit strings (which, during lecture, we used to represent numbers in binary form)
be defined as

bits ∼= (b0 : bits) + (b1 : bits) + (e : 1)
bits = µα. (b0 : α) + (b1 : α) + (e : 1)

We say a bit string has parity 0 if it has an even number of 0s and 1 if it has an odd number of 1s.
The answer to the questions below should be included in the file hw05.cbv.

(i) Define isomorphisms to be satisfied by two types bits0 and bits1, where the values of type
bits0 are exactly the bit strings with parity 0, and the values of type bits1 are exactly the bit
strings with parity 1.

(ii) Give explicit definitions bits0 = . . . and bits1 = . . . using the recursive type constructor µα. τ
satisfying this specification.

(iii) We now define a type
parity = (p0 : 1) + (p1 : 1)

Define a function parity : bits→ parity that computes the parity of the given bit string.

(iv) Next we define
par0 = (p0 : 1) + ()
par1 = () + (p1 : 1)

It should be the case that

parity v0 7→∗ w0 where w0 : par0 if v0 : bits0
parity v1 7→∗ w1 where w1 : par1 if v1 : bits1

Does your implementation of parity have either following types?

parity : bits0→ par0
parity : bits1→ par1

If not, explain why not. We are not looking for a paraphrase of the error message, but a brief
analysis why the two types above may be difficult to verify for a type-checker.

If yes, explain briefly which feature of your implementation made it possible for the type-
checker to verify both of these properties.

The explanations should be included your hw05.cbv file. You may use the delimited com-
ments (* <comment> *) for this purpose.

ASSIGNMENT 5 DUE THURSDAY, OCTOBER 7, 2021
65 POINTS


	Type Isomorphisms
	Programming with Lists
	Mutually Recursive Types

