
Assignment 4
Defining Types

15-814: Types and Programming Languages
Frank Pfenning & David M Kahn

Due Thursday, September 30, 2021
60 points

This assignment is due on the above date at 11:59 pm and it must be submitted electronically
on Gradescope. You may use the distributed lecture notes and assignment sources to typeset your
assignment and make sure to include your full name and Andrew ID on the written part.

You should hand in two files

• hw04.pdf with your written solutions to the questions

• hw04.poly with the code, where the solutions to the problems are clearly marked and
auxiliary code (either from lecture or your own) is included so it passes the LAMBDA checker.

1 Evaluation and Reduction

Task 1 (L7.1, 10 pts) For each of the following statements, provide either a proof or counter exam-
ple. Consider only the case for e in the untyped λ-calculus from earlier in the course, and recall
that a closed expression is one with no free variables.

(i) For closed e, if e value then e normal.

(ii) For closed e, if e normal then e value.

2 Structure of Types

Task 2 (L7.2, 15 pts) An alternative form of binary tree to the one given in Lecture 7.3 is one where
the natural numbers are stored in the leaves and not in the nodes. Let’s call such a tree a shrub.

(i) Give the types for shrub constructors.

(ii) Give the construction of a shrub containing the numbers 1, 2, and 3.

(iii) Give the polymorphic definition of the type shrub, assuming it is represented by its own
iterator.

(iv) Provide the definitions of the shrub constructors.

ASSIGNMENT 4 DUE THURSDAY, SEPTEMBER 30, 2021
60 POINTS

Defining Types HW4.2

(v) Write a function sumup to sum the elements of a shrub.

(vi) Write a function mirror that returns the mirror image of a given tree, reflected about a vertical
line down from the root.

Include your definitions in the file hw04.poly together with a few test cases.

Task 3 (L7.3 10 pts) We say two types τ and σ are isomorphic (written τ ∼= σ) if there are two
functions forth : τ → σ and back : σ→ τ such that they compose to the identity in both directions,
that is, λx. back (forth x)) is equal to λx. x and λy. forth (back y) is equal to λy. y.

Consider the two types
nat = ∀α. (α→ α)→ α→ α
tan = ∀α. α→ (α→ α)→ α

(i) Provide functions forth : nat→ tan and back : tan→ nat that, intuitively, should witness the
isomorphism between nat and tan.

(ii) Compute the normal forms of the two function compositions. You may recruit the help of the
LAMBDA implementation for this purpose.

(iii) Are the two function compositions β-equal to the identity? If yes, you are done. If not, can
you see a sense under which they would be considered equal, either by changing your two
functions or be defining a suitably justified notion of equality?

Include your functions forth and back as well as their compositions in the file hw04.poly.

3 Lazy Pairs

Task 4 (L8.6, 20 points) Lazy pairs, constructed as 〈|e1, e2|〉, are an alternative to the eager pairs
〈e1, e2〉. Lazy pairs are typically available in “lazy” languages such as Haskell. The key differences
are that a lazy pair 〈|e1, e2|〉 is always a value, whether its components are or not. In that way, it is
like a λ-expression, since λx. e is always a value. The second difference is that its destructors are
fst e and snd e rather than a new form of case expression.

We write the type of lazy pairs as τ1 N τ2. In this exercise you are asked to design the rules for
lazy pairs and check their correctness.

1. Write out the new rule(s) for e value.

2. State the typing rules for new expressions 〈|e1, e2|〉, fst e, and snd e.

3. Give evaluation rules for the new forms of expressions.

Instead of giving the complete set of new proof cases for the additional constructs, we only ask you
to explicate a few items. Nevertheless, you need to make sure that the progress and preservation
continue to hold.

4. State the new clause in the canonical forms theorem.

5. Show one case in the proof of the preservation theorem where a destructor is applied to a
constructor.

ASSIGNMENT 4 DUE THURSDAY, SEPTEMBER 30, 2021
60 POINTS

Defining Types HW4.3

6. Show the case in the proof of the progress theorem analyzing the typing rule for fst e.

Task 5 (L8.8, 5 points) It is often stated that lazy pairs are not necessary in an eager language,
because we can already define τ1 N τ2 and the corresponding constructors and destructors. Fill in
this table.

τ1 N τ2 , (1→ τ1)× (1→ τ2)

〈|e1, e2|〉 ,

fst e ,

snd e ,

ASSIGNMENT 4 DUE THURSDAY, SEPTEMBER 30, 2021
60 POINTS

	Evaluation and Reduction
	Structure of Types
	Lazy Pairs

