
Assignment 3
Polymorphism

15-814: Types and Programming Languages
David M Kahn & Frank Pfenning

Due Thursday September 23, 2021
75 points

This assignment is due on the above date and it must be submitted electronically as a PDF
file on Canvas. You may use the distributed lecture notes and assignment sources to typeset your
assignment and make sure to include your full name and Andrew ID on the written part.

You should hand in two files

• hw03.pdf with your written solutions to the questions

• hw03.poly with the code, where the solutions to the problems are clearly marked and
auxiliary code (either from lecture or your own) is included so it passes the LAMBDA checker.

1 Proof by Rule Induction

Task 1 (L5.2, 40 points) Define a new single-step relation e 7→ e′ which means that e reduces to
e′ by leftmost-outermost reduction, using a collection of inference rules. Intuitively, a single step of
leftmost-outermost reduction operates by attempting to apply the leftmost lambda possible in the
term, such that functions are applied before their body or arguments are reduced. This strategy is
sound (it only performs β-reductions) and complete for normalization (if e has a normal form, we can
reach it by performing only leftmost-outermost reductions).

Prove the following two statements about your reduction judgment. For reference, we provide
rules for general β-reduction −→ here.

(i) If e 7→ e′ then e −→ e′

(ii) 7→ is small-step deterministic, that is, if e 7→ e1 and e 7→ e2 then e1 = e2.

You should interpret = as α-equality, that is, the two terms differ only in the names of their bound
variables (which we always take for granted). For each of the following statements, either indicate
that they are true (without proof) or provide a counterexample.

(iii) For all e, either e 7→ e′ for some e′ or e normal.

(iv) There does not exist an e such that e 7→ e′ for some e′ and e normal.

(v) If e −→ e′ then e 7→ e′.

ASSIGNMENT 3 DUE THURSDAY SEPTEMBER 23, 2021
75 POINTS

https://www.cs.cmu.edu/~fp/courses/15814-f21/lectures/05-repn-rules.pdf

Polymorphism HW3.2

(vi) −→ is small-step deterministic.

(vii) −→ is big-step deterministic, that is, if e −→∗ e1 and e −→∗ e2 where e1 normal and e2 normal,
then e1 = e2.

(viii) For arbitrary e and normal e′, e −→∗ e′ iff e 7→∗ e′.

2 Polymorphic Functions

Task 2 (L3.2, 10 points) Fill in the blanks in the following judgments so that it holds, or indicate
there is no way to do so. You do not need to justify your answer or supply a typing derivation, and
the types do not need to be “most general” in any sense. As always, feel free to use LAMBDA to
check your answers.

(i) ` ∀α. α→ β type

(ii) ` Λα. x [α→ α] y [β] : ∀α. β

(iii) · ` λx. x []xx :

(iv) α type ` : ∀β. α→ β

(v) x : ∀α. (∀β. β → β)→ α, γ type ` : (γ → γ)→ γ

Task 3 (L6.1, 10 pts)

(i) In lecture we defined plus : nat→ nat→ nat using the polymorphic λ-calculus with

λn. λk. n [nat] succ k

In doing so, we instantiated nat = ∀α.(α → α) → α → α with nat itself. Such an approach
would not work using the simply-typed definition of nat, (α→ α)→ α→ α, which has no
way of instantiating its type variables. For this task, find a definition of plus : nat→ nat→ nat
using the polymorphic defition of nat that would work in the simply-typed λ-calculus, in the
sense that nat is only ever instantiated with a type variable.

(ii) Give a simply-typed definition (in the sense of part (i)) for times or give a conjecture that none
exists.

Include your definition(s) with least 3 test cases each in the file hw03.poly, and in your hw03.pdf
state either conjecture and reasoning, or that you have found a simply-typed definition.

Task 4 (L6.3, 15 pts) While we didn’t quite get to it in lecture, the self-application λx. x [u]x can
be typed polymorphically with u→ u by setting u = ∀α. α → α. It turns out that this is just one
instance of a whole family of types for self-application. Consider a (mathematical) function1 F from

1Note that such a function not expressible in the polymorphic λ-calculus but requires system Fω

ASSIGNMENT 3 DUE THURSDAY SEPTEMBER 23, 2021
75 POINTS

Polymorphism HW3.3

types to types. A more general family of types and terms for self-application can be parameterized
by F , given by uF and ωF below:

uF = ∀α. α→ F (α)

ωF : uF → F (uF)
ωF = λx. x [uF] x

We can find the original type in this family where F = Λα. α. You may want to verify the
general typing derivation in preparation for the following questions, but you do not need to show
it.

(i) Consider F = Λα. α→ α. In this case uF = bool. Calculate the type and characterize the
behavior of ωF as a function on Booleans.

(ii) Consider F = Λα. (α→α)→α. Calculate uF , the type of ωF , and characterize the the behavior
of ωF . Can you relate uF and ωF to the types and functions we have considered in the course
so far?

For both parts, include your functions with their type in the file hw03.poly together with a few
test cases that demonstrate your interpretation of how ωF behaves in those two instances. And of
course, include the written answers in hw03.pdf.

ASSIGNMENT 3 DUE THURSDAY SEPTEMBER 23, 2021
75 POINTS

	Proof by Rule Induction
	Polymorphic Functions

