
Assignment 2
The Simply Typed λ-Calculus

15-814: Types and Programming Languages
David Kahn & Frank Pfenning

Due Thursday, September 16, 2021
65 pts

This assignment is due on the above date and it must be submitted electronically on Gradescope.
Please use the attached template to typeset your assignment and make sure to include your full
name and Andrew ID. For the written problems, you may also submit handwritten answers that
have been scanned and are easily legible.

Please carefully read the policies on collaboration and credit on the course web pages at
http://www.cs.cmu.edu/˜fp/courses/15814-f20/assignments.html.

You should hand in two files

• hw02.pdf with your written solutions to the questions.

• hw02.lam with the code, where the solutions to the problems are clearly marked and
auxiliary code (either from lecture or your own) is included so it passes the LAMBDA checker.

1 Y Combinator

Task 1 (L3.1, 15 pts) The Lucas function (a variant on the Fibonacci function) is defined mathemat-
ically by

lucas 0 = 2
lucas 1 = 1
lucas (n+ 2) = lucas n+ lucas (n+ 1)

Give an implementation of lucas using the Y combinator.
You may copy the functions from nat.lam to the beginning of your file hw02.lam to use as

helper functions. Test your implementation on inputs 0, 1, 9, and 11, expecting results 2, 1, 76, and
199.

In the previous homework, you recorded the number of β-reductions taken by your primitive
recursive implementation of lucas. Compare this record to your Y combinator implementation.
Which of the two implementations is more “efficient” (in the sense of number of β-reductions)?

ASSIGNMENT 2 DUE THURSDAY, SEPTEMBER 16, 2021
65 PTS

http://www.cs.cmu.edu/~fp/courses/15814-f20/assignments.html
http://www.cs.cmu.edu/~fp/courses/15814-f20/assignments.html
http://www.cs.cmu.edu/~fp/courses/15814-f20/lectures/03-recursion/nat.lam


The Simply Typed λ-Calculus HW2.2

2 Simple types

Task 2 (L3.2, 10 points) Fill in the blanks in the following typing judgments so the resulting judg-
ment holds, or indicate there is no way to do so. You do not need to justify your answer or supply
a typing derivation, and the types do not need to be “most general” in any sense. Remember that
the function type constructor associates to the right, so that τ → σ→ ρ = τ → (σ→ ρ).

(i) ` y x : α

(ii) ` xx :

(iii) · ` : (α→ α)→ α

(iv) · ` (λz. z) (λx. λy. λp. p x y) :

(v) · ` λf. λg. λx. (f x) (g x) : (α→ )→ (α→ )→ (α→ )

3 Proof by Rule Induction

Since this is the first time we (that is, you) are proving theorems about judgments defined by rules,
we ask you to be very explicit, as we were in the lectures and lecture notes. In particular:

• Explicitly state the overall structure of your proof: whether it proceeds by rule induction, and,
if so, on the derivation of which judgment, or by structural induction, or by inversion, or just
directly. If you need to split out a lemma for your proof, state it clearly and prove it separately.
If you need to generalize your induction hypothesis, clearly state the generalized form.

• Explicitly list all cases in an induction proof. If a case is impossible, prove that is is impossible.
Often, that’s just inversion, but sometimes it is more subtle.

• Explicitly note any appeals to the induction hypothesis.

• Any appeals to inversion should be noted as such, as well as the rules that could have inferred
the judgment we already know. This could lead to zero cases (a contradiction—the judgment
could not have been derived), one case (there is exactly one rule whose conclusion matches
our knowledge), or multiple cases, in which case your proof now splits into multiple cases.

• We recommend that you follow the line-by-line style of presentation where each line is
justified by a short phrase. This will help you to check your proof and us to read and verify it.

Task 3 (L4.1, 20 points) In lecture, we defined the reflexive and transitive closure (−→∗) of the
single-step reduction (−→) with the following:

e −→∗ e
red∗/refl

e1 −→∗ e2 e2 −→∗ e3
e1 −→∗ e3

red∗/trans
e1 −→ e2

e1 −→∗ e2
red∗/step

ASSIGNMENT 2 DUE THURSDAY, SEPTEMBER 16, 2021
65 PTS



The Simply Typed λ-Calculus HW2.3

However, it is more common to define multistep reduction with only two rules, as is done for
the =⇒ judgment below:

e =⇒ e
reds/refl

e1 −→ e2 e2 =⇒ e3
e1 =⇒ e3

reds/step

Prove by rule induction that these two definitions are equivalent in the sense that e =⇒ e′ iff
e −→∗ e′.

Task 4 (L4.2, 20 points) Recall the relation −→∗ defined in the previous task. Prove by rule induc-
tion that if Γ ` e : τ and e −→∗ e′ then Γ ` e′ : τ . Here (as in general in the course), you may use
theorems we have proved in the course (lecture or notes).

ASSIGNMENT 2 DUE THURSDAY, SEPTEMBER 16, 2021
65 PTS


	Y Combinator
	Simple types
	Proof by Rule Induction

