Home

Schedule
Assignments
Resources

Piazza
Canvas
fp@cs
Frank Pfenning

15-814 Types and Programming Languages

Fall 2019 Frank Pfenning TuTh 10:30-11:50 GHC 4215 12 units

First lecture will be Tue Sep 3

This graduate course provides an introduction to programming languages viewed through the lens of their type structure.

Prerequisites: This is an introductory graduate course with no formal prerequisites, but an exposure to various forms of mathematical induction will be helpful. Enterprising undergraduates and masters students are welcome to attend this course.

Prior Versions of This Course

Fall 2018

Fall 2017. Karl Crarv

• Fall 2015, Robert Harper

Class Material

Schedule Lecture notes and additional readings
Assignments Assignments and due dates

Resources Links to other resources

Course Information

Lectures Tu Th 10:30-11:50, GHC 4215

Instructor Frank Pfenning, fp@cs

Office Hours Fri 1:00pm-2:00pm, GHC 6017

Teaching Farzaneh Derakhshan, fderakhs@andrew

Assistant Office Hours Mon 2:30pm-3:30pm, WeH 5302

Course piazza.com/cmu/fall2019/15814

Communication

Textbook and Robert Harper,

Notes Practical Foundations for Programming Languages

(Second Edition),

Cambridge University Press, April 2016.

Additional notes will be posted on the schedule page.

Credit 12 units

Grading 60% Homework, 15% Midterm, 25% Final **Homework** Homework assignments are posted on the

assignments page.

Midterm Thu Oct 17, in class.

Closed book.

Final Fri Dec 13, 5:30pm-8:30pm, TEP 2611

Closed book.

Home http://www.cs.cmu.edu/~fp/courses/15814-f19/

Learning objectives: After taking this course, students will be able to

- define programming languages via their type system and operational semantics
- draw from a rich set of type constructors to capture essential properties of computational phenomena
- state and prove the preservation and progress theorems or exhibit counterexamples
- recognize and avoid common fallacies in proofs and language design
- write small programs to illustrate the expressive power and limitations of a variety of type constructors
- state and prove properties of individual programs based on their semantics or exhibit counterexamples
- critique programming languages and language constructs based on the mathematical properties they may or may not satisfy
- appreciate the deep philosophical and mathematical underpinnings of programming language design

Core topics:

- Static and dynamic semantics
- Preservation and progress
- Hypothetical judgments and substitution
- Propositions as types, natural deduction, sequent calculus
- The untyped lambda-calculus
- · Functions, eager and lazy products, sums
- Recursive types
- Parametric polymorphism, data abstraction, existential types
- K machine, S machine, substructural operational semantics
- Message-passing concurrency, session types

[Home | Schedule | Assignments | Resources |

fp@cs Frank Pfenning Home Schedule

Assignments

Resources

Piazza
Canvas
fp@cs
Frank Pfenning

15-814 Types and Programming Languages Assignments

- Assignments generally are given out Tuesday and are due the following Tuesday, but the schedule may vary.
- Unless otherwise noted, assignments are individual assignments. They
 must represent your own work. You may consult any public resources
 such as papers, reports, or lecture notes, but you must explicitly credit
 such external resources in your answers. You are not permitted to draw
 upon assignments or solutions from previous instances of this course or
 other courses in preparing your work. Carnegie Mellon's policy on
 academic integrity applies to this course.
- Some problems will be marked as subject to the Whiteboard Policy:

Once you have made an honest effort to solve a whiteboard problem on your own, you are free to discuss that problem with your classmates. At the end of your discussion, any record of the discussion must be erased and you must wait a few hours before writing your solution on your own. Practically, this means:

- If you work at a board, erase the board. Do not take pictures of the board.
- If you write on pieces of paper throw them out at the end of the discussion.
- Do not discuss problems over Slack, email, WhatsApp, etc.

Please follow the spirit and the letter of this policy: its goals are to help you learn, to ensure that you understand the work you submit, and to ensure that your work is your own.

- Homeworks may require small implementations, or simply write-ups with LaTeX or with pencil and paper.
- If you want to typeset your answers, some sample LaTeX lecture notes and necessary style file will be posted in the <u>misc/latex/</u> directory or are available in the homework handouts.
- Emphasis is on correctness and elegance. Some assignments may be very difficult. If you cannot do them, write down your thoughts, but never hand back an incorrect "proof".
- Written homeworks are due at 11:59pm on the due date. They should be submitted as PDFs via Canvas.
- We will try our best to return graded homework during the lecture following the due date.
- Assignment hand-in and grades are tracked on Canvas.

Out	Assignment	Reference	Due	Sample
				Solution

Sep	10	The Untyped λ-Calculus	(LaTeX source)	Tue	Sep	17	(sample solution)
Sep	17	<u>The Simply-Typed λ-Calculus</u>	(<u>LaTeX</u> source)	Tue	Sep	24	(sample solution)
Sep	24	Nontermination	(<u>LaTeX</u> source)	Tue	Oct	1	(sample solution)
Oct	1	<u>Lazy Pairs and Type</u> <u>Isomorphisms</u>	(<u>LaTeX</u> source)	Tue	Oct	7	(sample solution)
Oct	9	Mutual Recursion	(<u>LaTeX</u> source)	Tue	Oct	15	(sample solution)
Oct	22	The K Machine	(<u>LaTeX</u> source)	Tue	Oct	29	(sample solution)
Oct	29	<u>Propositions as Types</u>	(<u>LaTeX</u> source)	Tue	Nov	5	(sample solution)
Nov	6	<u>Parametricity</u>	(<u>LaTeX</u> source)	Tue	Nov	12	(sample solution)
Nov	20	<u>Lazy Records</u>	(LaTeX source)	Tue	Nov	26	(sample solution)
Nov	27	<u>Linearity</u>	(<u>LaTeX</u> source)	Fri	Dec	6	(sample solution)

[Home | Schedule | Assignments | Resources |

fp@cs Frank Pfenning Home Schedule

Assignments Resources

Piazza
Canvas
fp@cs
Frank Pfenning

15-814 Types and Programming Languages Schedule

- Lectures are Tuesday and Thursday, 10:30pm-11:50pm, GHC 4215
- The lecture notes provide additional reading material
 They complement, but do not replace the lecture or the textbook
- The schedule is subject to change throughout the semester
- Chapter and exercise references are to the textbook
- Further references can be found in the lecture notes and textbook

	Date		Lecture Notes	Additional Reading	Due
Tue Thu	Aug Aug	27 29	No Lecture (CSD IC) No Lecture (CSD IC)		
Tue Thu	Sep Sep	3 5	The Lambda Calculus Recursion	Ch 21.1-21.2 Ch 21.2, <u>lam.sml</u>	
Tue Thu	Sep Sep		Simple Types Representation Theorems	Ch 8.1-8.2	
Tue	Sep	17	Subject Reduction		Asst
Thu	Sep	19	From λ-Calculus to Programming Languages	Ch 8.1-2, Ch 6	1
Tue	Sep	24	<u>Products</u>	Ch 10.1-2	Asst 2
Thu	Sep	26	<u>Sums</u>	Ch 11.1-2	<u> </u>
Tue	Oct	1	Recursive Types	Ch 20, Ch 21.4	Asst
Thu	Oct	3	<u>Elaboration</u>		<u>3</u>
Tue	Oct	8	Exceptions	Ch 29	Asst
Thu	Oct	11	The K Machine	Ch 28, <u>code</u> (in Haskell)	<u>4</u>
Tue	Oct	15	Bisimulation		Asst
Thu	Oct	17	Midterm Exam	(sample solution) F'18 midterm (sample solution)	<u>5</u>

Tue Thu	Oct Oct	22 24	Propositions as Types Parametric Polymorphism	Ch 12 Ch 16	
Tue	Oct		Parametricity Data Abstraction	Ch 16.3, Ch 48	Asst 6
Thu	Oct	31	Data Abstraction		
Tue	Nov	5	Representation Independence		Asst 7
Thu	Nov	7	Shared Memory Concurrency		
Tue	Nov	12	Negative Types		Asst 8
Thu	Nov	14	Memory Safety		
Tue	Nov	19	Mutable Memory		
Thu	Nov	21	<u>Linear Types</u>		
Tue	Nov	26	No Class (Reading Day)		Asst 9
Thu	Nov	28	No Class (Thanksgiving Break)		
Tue	Dec	3	Message-Passing Concurrency	[<u>PP19</u> , Sec 1-4]	
Thu	Dec	5	Review	(15-814 PL Awards)	<u>Asst</u> 10
Fri	Dec	13	Final Exam 5:30pm- 8:30pm, TEP 2611	(sample solution)	

[Home | Schedule | Assignments | Resources]

fp@cs Frank Pfenning