
Final Exam

15-814 Types and Programming Languages
Frank Pfenning

December 13, 2018

Name: Andrew ID:

Instructions

• This exam is closed-book, closed-notes.

• You have 180 minutes to complete the exam.

• There are 5 problems.

• For reference, on pages 15–18 there is an appendix with sections on the syntax, statics, and
dynamics.

Parametric Data Session

Polymorphism Abstraction Exceptions Quotation Types

Prob 1 Prob 2 Prob 3 Prob 4 Prob 5 Total

Score

Max 50 55 50 45 50 250
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1 Parametric Polymorphism (50 pts)

In this problem we use the implicit form of parametric polymorphism and we only allow pure
λ-expressions (in particular, we disallow fixed points fixx. e). As a reminder, we have the following
typing rules, with the usual provisos:

∆, α type ; Γ ` e : τ

∆ ; Γ ` e : ∀α. τ
(I-∀)

∆ ; Γ ` e : ∀α. τ ∆ ` σ type

∆ ; Γ ` e : [σ/α]τ
(E-∀)

We define the a family of types only τ by

only τ = ∀γ. (τ → γ)→ γ

Task 1 (10 pts). Define

in : ∀α. α→ only α

Task 2 (10 pts). Define

out : ∀α.only α→ α

Task 3 (10 pts). Evaluate out (in v) for a closed value v : τ .
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Task 4 (10 pts). Evaluate in (out w) for a closed value w : only τ

Task 5 (10 pts). Circle all statements that are true in the setting of this problem as explained at the
beginning of this section.

(i) Any closed well-typed expression evaluates to a value.

(ii) There is no closed expression of type ∀α. α.

(iii) We can conclude without knowing the definitions of out and in that

(out ◦ in) ∼ (λx. x) : ∀α. α→ α

(iv) We can conclude without knowing the definitions of out and in that for any closed value v : τ
we have

out (in v) 7→∗ v

(v) For any closed expression of type e : τ we have e ∼ e : τ .
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2 Data Abstraction (55 points)

In this problem we explore data abstraction. More specifically, we consider whether the usual
convention in C-like languages that 0 = false and n = true for n > 0 is somehow defensible.

For this enterprise we use existential types to represent abstraction and logical equality to
reason about representation independence. Recall that the baseline for logical equality is Kleene
equality, e ' e′ which means that there is a value v such that e 7→∗ v and e′ 7→∗ v. As during
lectures, we assume that all expressions we are concerned with terminate.

As a reminder, we define e ∼ e′ : τ inductively on the structure of τ , assuming e and e′ are
closed and of type τ . We then close the relation on both sides under Kleene equality. Here are two
cases in the definition:

(→) e ∼ e′ : τ1→ τ2 iff for all v1 ∼ v′1 : τ1 we have e v1 ∼ e′ v′1 : τ2

(+) v ∼ v′ : τ1 + τ2 iff either v = l · v1, v′ = l · v′1, and v1 ∼ v′1 : τ1 or v = r · v2, v′ = r · v′2, and
v2 ∼ v′2 : τ2

Task 1 (5 pts). We define as usual, bool = (false : 1) + (true : 1). Give a necessary and sufficient
condition for

v ∼ v′ : bool

for closed values v and v′ of type bool (which is then closed under Kleene equality to obtain
e ∼ e′ : bool).

v ∼ v′ : bool iff

Task 2 (5 pts). We define as usual, nat = ρα. (z : 1) + (s : α). Give a necessary and sufficient
condition for

v ∼ v′ : nat

for closed values v and v′ of type nat (which is then closed under Kleene equality to obtain
e ∼ e′ : nat).

v ∼ v′ : nat iff
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Now we consider the type

BOOL = ∃α. (bool→ α)⊗ (α→ α)⊗ (α→ bool)

which represents a module with hidden implementation type τ for α and functions

to : bool→ τ map a boolean to its representation
neg : τ → τ negate the representation
from : τ → bool map a representation back to a boolean

In the first implementation, booleans are represented with type bool. For our own reasons, a Boolean
value is internally represented by its negation.

Impl1 : BOOL
Impl1 = 〈bool,not,not,not〉

In the second implementation, booleans are represented with type nat where zero represents false
and all non-zero numbers represent true.

Impl2 : BOOL
Impl2 = 〈nat, rep,neg,unrep〉

Task 3 (15 pts). Provide definitions for rep, neg and unrep. You may use the following constructors
and also pattern-match against them.

False = false · 〈 〉
True = true · 〈 〉

Z = fold (z · 〈 〉)
Sx = fold (s · x)

Please make sure to explicitly state the type and the definition of each function.
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Now we want to prove that these two implementations are logically equivalent and therefore
indistinguishable in a language satisfying parametricity.

Task 4 (10 pts). Define an appropriate relation R : bool↔ nat between the representations.

Task 5 (10 pts). Prove that not ∼ rep : bool→R.
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Task 6 (10 pts). Proof that not ∼ neg : R→R.

It should also be true that not ∼ unrep : R→ bool but you do not have to prove this.
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3 Exceptions in the K Machine (50 points)

In this problem we explore extending our functional language with exceptions. For simplicity, we
have just two new forms of expressions:

Expressions e ::= . . . | fail | try e catch e′

The intended semantics is as follows.

• try e catch e′ evaluates e. If it returns normally with value v we ignore the exception handler
e′ and return v. If e raises an exception we handle this exception and continue evaluation
with e′.

• fail raises an exception instead of returning a value. The innermost enclosing handler (if
there is one) will catch this exception; otherwise the whole computation will simply fail.

We do not formalize the usual dynamics, but here are some examples:

try v1 catch v2 7→∗ v1
try fail catch v2 7→∗ v2
try (try fail catch v1) catch v2 7→∗ v1
try fail catch fail 7→∗ fail
(try (λx. fail) catch v2) v1 7→∗ fail

The last example illustrates the scoping of the try/catch blocks.

Task 1 (10 pts). Give typing rules for the new expressions such that type preservation holds.
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Task 2 (15 pts). Extend the K machine so that there are three possible forms of states s:

• k . e: evaluate e with continuation k

• k / v: return value v to continuation k

• k J fail: signal an exception to continuation k

In addition to the new rules, indicate if any of the existing rules need to be changed.

Task 3 (5 pts). Recall that we typed continuations as k ÷ τ ⇒ σ, expressing that k maps a value of
type τ to a final answer of type σ. Provide the typing rules for all new forms of continuation from
your answer in Task 2.
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Task 4 (10 pts). We write s : σ if state s returns a final answer of type σ if it terminates. There are
three typing rules, one for each kind of state. We have filled in one for you already supply the other
two.

k ÷ τ ⇒ σ · ` e : τ

k . e : σ

Task 5 (10 pts). State the progress theorem for the extended K machine.
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4 Quotation (45 points)

In this problem we explore quotation and staged computation. Recall the judgment Ψ ; Γ ` e : τ
where Ψ contains expression variables u : τ and Γ contains ordinary value variables x : τ . We have
one new type constructor �τ with the following statics:

Ψ ; · ` e : τ

Ψ ; Γ ` box e : �τ
(I-�)

Ψ ; Γ ` e : �τ Ψ, u : τ ; Γ ` e′ : τ ′

Ψ ; Γ ` case e {box u⇒ e′} : τ ′
(E-�)

We define the booleans as usual as bool = (false : 1) + (true : 1) and allow definitions by pattern
matching that can be desugared into the usual case constructs as in Problem 2. In particular:

not : bool→ bool
not False = True
not True = False

and : bool→ bool→ bool
or : bool→ bool→ bool

We have omitted the definitions of and and or. We assume these three functions as well as the
constructors False and True can be used freely, including inside quoted expressions box e.

Task 1 (10 pts). Write a well-typed (that is, properly staged) function

and′ : bool→�(bool→ bool)

Task 2 (5 pts). The proposed staged definition for equivalence of booleans,

equiv′ : bool→�(bool→ bool)

equiv′ x = box (λy. or (and x y) (and (not x) (not y)))

is not well-typed. Explain where and why typing fails.
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Task 3 (10 pts). Restage the definition of equiv′ so it is correctly typed, using and′ from Task 1
wherever possible.

Task 4 (10 pts). Implement directly an even more streamlined staged version of equivalence.

equiv′′ : bool→�(bool→ bool)

Task 5 (10 pts). Circle all true statements.

(i) We can define a function bool→� bool.

(ii) We can define a function ∀α. α→�α.

(iii) We can define a function ∀α.�α→ α.

(iv) We can define a function ∀α.∀β. (�α)⊗ (�β)→� (α⊗ β).

(v) We can define a function ∀α.∀β.� (α⊗ β)→ (�α)⊗ (�β)

12



5 Session Types (50 points)

For a quick reference on session types and processes, see page 18 in the appendix. As usual in this
course, we define numbers in binary representation as

bin = ⊕{b0 : bin, b1 : bin, ε : 1}

Task 1 (10 pts). Complete the following definition of zero.


 zero :: (z : bin)
z ← zero =

Task 2 (10 pts). Complete the following definition of succ, which produces on y the sequence of bits
representing the successor of x.

x : bin 
 succ :: (y : bin)
y ← succ← x =

case x ( b0⇒

| b1⇒

| ε⇒

)

Task 3 (10 pts). Complete the following definition of the predecessor process pred. It produces on
y a sequence of bits representing the predecessor of x, where x must represent a strictly positive
number. This constraint is expressed by the type

pos = ⊕{b0 : pos, b1 : bin}

x : pos 
 pred :: (y : bin)

y ← pred← x =
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Task 4 (15 pts). Define the following process that calculates the number of bits in x and outputs
that number along y. We define this as the number of b0 and b1 labels, and not counting ε. You
may use zero, succ, and pred as needed, at the indicated types.

x : bin 
 numbits :: (y : bin)

y ← numbits← x =

Task 5 (5 pts). We might conjecture that the number of bits in a strictly positive binary number
is equal to the floor of the logarithm of that number plus one, that is numbits(n) = blog2(n)c + 1
provided n > 0. However, this is not the case. Explain briefly why, and how you might write the
logarithm function (you do not need to write any code).
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Appendix: Some Inference Rules

A Syntax

Types τ and terms e are given by the following grammars, where I ranges over finite index sets.
We present disjoint sums in their n-ary form and lazy pairs in their binary form, because it is these
forms we use in this exam.

τ ::= α | τ1 → τ2 | τ1 ⊗ τ2 | 1 |
∑

i∈I(i : τi) | τ1 & τ2 | ρ(α.τ)

e ::= x (variables)
| λx. e | e1 e2 (→)
| i · e | case e {i · xi ⇒ ei}i∈I (+)
| 〈e1, e2〉 | case e0 {〈x1, x2〉 ⇒ e′} (⊗)
| 〈 〉 | case e0 {〈 〉 ⇒ e′} (1)
| 〈|e1, e2|〉 | e · l | e · r (&)
| fold(e) | unfold(e) (ρ)
| fix(x.e) (recursion)
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B Statics, Expressions: Γ ` e : τ

x : τ ∈ Γ

Γ ` x : τ
(VAR)

Γ, x : τ ` e : τ ′

Γ ` λx.e : τ → τ ′
(I-→)

Γ ` e1 : τ → τ ′ Γ ` e2 : τ

Γ ` e1 e2 : τ ′
(E-→)

Γ ` e : τj (j ∈ I)

Γ ` j · e :
∑

i∈I(i : τi)
(I-+)

Γ ` e :
∑

i∈I(i : τi) Γ, xi : τi ` ei : τ (∀i ∈ I)

Γ ` case e {i · xi ⇒ ei}i∈I : τ
(E-+)

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` 〈e1, e2〉 : τ1 ⊗ τ2
(I-⊗)

Γ ` e0 : τ1 ⊗ τ2 Γ, x1 : τ1, x2 : τ2 ` e′ : τ

Γ ` case e0 {〈x1, x2〉 ⇒ e′} : τ
(E-⊗)

Γ ` 〈 〉 : 1
(I-1)

Γ ` e0 : 1 Γ ` e′ : τ
Γ ` case e0 {〈 〉 ⇒ e′} : τ

(E-1)

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` 〈|e1, e2|〉 : τ1 & τ2
(I-&)

Γ ` e : τ1 & τ2

Γ ` e · l : τ1
(E-&l)

Γ ` e : τ1 & τ2

Γ ` e · r : τ2
(E-&r)

Γ ` e : [ρ(α.τ)/α]τ

Γ ` fold(e) : ρ(α.τ)
(I-ρ)

Γ ` e : ρ(α.τ)

Γ ` unfold(e) : [ρ(α.τ)/α]τ
(E-ρ)

Γ, x : τ ` e : τ

Γ ` fix(x.e) : τ
(FIX)

C Statics, Closed Values: v :: τ

x : τ ` e : τ ′

λx.e :: τ → τ ′
(IV-→)

v :: τj (j ∈ I)

j · v ::
∑

i∈I(i : τi)
(IV-+)

v1 :: τ1 v2 :: τ2

〈v1, v2〉 :: τ1 ⊗ τ2
(IV-⊗)

〈 〉 :: 1
(IV-1)

· ` e1 : τ1 · ` e2 : τ2

〈|e1, e2|〉 :: τ1 & τ2
(IV-&)

v :: [ρ(α.τ)/α]τ

fold(v) :: ρ(α.τ)
(IV-ρ)
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D Dynamics: e 7→ e′ and v val

λx.e val
(V-→)

v2 val

(λx. e1) v2 7→ [v2/x]e1
(R-→)

e1 7→ e′1

e1 e2 7→ e′1 e2
(CE-→1)

v1 val e2 7→ e′2

v1 e2 7→ e1 e
′
2

(CE-→2)

v val
i · v val

(V-+)
e 7→ e′

i · e 7→ i · e′
(CI-+)

e 7→ e′

case e {i · xi ⇒ ei}i∈I 7→ case e′ {i · xi ⇒ ei}i∈I
(CE-+)

vj val

case (j · vj) {i · xi ⇒ ei}i∈I 7→ [vj/xj ]ej
(R-+)

v1 val v2 val

〈v1, v2〉 val
(V-⊗)

e1 7→ e′1

〈e1, e2〉 7→ 〈e′1, e2〉
(CI-⊗1)

v1 val e2 7→ e′2

〈v1, e2〉 7→ 〈v1, e′2〉
(CI-⊗2)

e0 7→ e′0

case e0 {〈x1, x2〉 ⇒ e′} 7→ case e′0 {〈x1, x2〉 ⇒ e′}
(CE-⊗)

v1 val v2 val

case 〈v1, v2〉 {〈x1, x2〉 ⇒ e′} 7→ [v1/x1, v2/x2]e
′

(R-⊗)

〈 〉 val
(V-1)

e0 7→ e′0

case e0 {〈 〉 ⇒ e′} 7→ case e′0 {〈 〉 ⇒ e′}
(CE-1)

case 〈 〉 {〈 〉 ⇒ e′} 7→ e′
(R-1)

〈|e1, e2|〉 val
(V-&)

e 7→ e′

e · l 7→ e′ · l
(CI-&l)

e 7→ e′

e · r 7→ e′ · r
(CI-&)r

〈|e1, e2|〉 · l 7→ e1
(R-&l)

〈|e1, e2|〉 · r 7→ e2
(R-&r)

v val
fold(v) val

(V-ρ)
e 7→ e′

fold(e) 7→ fold(e′)
(CI-ρ)

e 7→ e′

unfold(e) 7→ unfold(e′)
(CE-ρ)

v val
unfold(fold(v)) 7→ v

(R-ρ)

fix(x.e) 7→ [fix(x.e)/x]e
(R-FIX)
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Session Types

Process expressions: forward, spawn, and tail-call

c← d implement c by d and terminate
x← f ← d1, . . . , dn ; Q spawn f , passing it channels d1, . . . , dn

f will provide a fresh channel a to client [a/x]Q
c← f ← d1, . . . , dn tail call to f providing c and using d1, . . . , dn

Session types and process expressions: message passing

Type Provider Client Continuation Type
c : ⊕{` : A`}`∈L (c.k ; P ) case c {`⇒ Q`}`∈L c : Ak

c : &{` : A`}`∈L case c {`⇒ P`}`∈L (c.k ; Q) c : Ak

c : 1 close c wait c ; Q (none)

Statics (where |y1 : A1, . . . , yn : An| = y1, . . . , yn)

y : A 
 (x← y) :: (x : A)
id

∆1 
 f :: (x : A) ∆2, x : A 
 Q :: (z : C)

∆1,∆2 
 (x← f ← |∆1| ; Q) :: (z : C)
spawn

∆ 
 f :: (x : A)

∆ 
 (x← f ← |∆|) :: (x : A)
tail

k ∈ L ∆ 
 P :: (x : Ak)

∆ 
 (x.k ; P ) :: (x : ⊕{` : A`}`∈L)
⊕R

(for all ` ∈ L) ∆, x : A` 
 Q` :: (z : C)

∆, x : ⊕{` : A`}`∈L 
 (case x {`⇒ Q`}`∈L) :: (z : C)
⊕L

(for all ` ∈ L) ∆ 
 P` :: (x : A`)

∆ 
 (case x {`⇒ P`}`∈L) :: (x : &{` : A`})
&R

k ∈ L ∆, x : Ak 
 Q :: (z : C)

∆, x : &{` : A`}`∈L 
 (x.k ; Q) :: (z : C)
&L

· 
 closex :: (x : 1)
1R

∆ 
 Q :: (z : C)

∆, x : 1 
 (waitx ; Q) :: (z : C)
1L

Dynamics

(idC) proc P d, proc (c← d) c 7→ proc ([c/d]P ) c

(spawnC) proc (x← f ← d ; Q) c 7→ proc ([d/y, a/x]P ) a, proc ([a/x]Q) c (a fresh)
where x← f ← y = P

(tailC) proc (c← f ← d) c 7→ proc ([d/y, c/x]P ) c where x← f ← y = P
(⊕C) proc (c.k ; P ) c, proc (case c {`⇒ Q`}`∈L) d 7→ proc P c, proc Qk d
(&C) proc (case c {`⇒ P`}`∈L) c, proc (c.k ; Q) d 7→ proc Pk c, proc Q d
(1C) proc (close c) c, proc (wait c ; Q) d 7→ proc Q d
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