Final Exam

15-814 Types and Programming Languages Frank Pfenning

December 13, 2018

Name: Andrew ID:

Instructions

- This exam is closed-book, closed-notes.
- You have 180 minutes to complete the exam.
- There are 5 problems.
- For reference, on pages 15–18 there is an appendix with sections on the syntax, statics, and dynamics.

	Parametric Polymorphism	Data Abstraction	Exceptions	Quotation	Session Types	
	Prob 1	Prob 2	Prob 3	Prob 4	Prob 5	Total
Score						
Max	50	55	50	45	50	250

1 Parametric Polymorphism (50 pts)

In this problem we use the implicit form of parametric polymorphism and we only allow pure λ -expressions (in particular, we disallow fixed points fix x. e). As a reminder, we have the following typing rules, with the usual provisos:

$$\frac{\Delta, \alpha \; \textit{type} \; ; \; \Gamma \vdash e : \tau}{\Delta \; ; \; \Gamma \vdash e : \forall \alpha. \, \tau \quad \Delta \vdash \sigma \; \textit{type}} \; (\text{E-}\forall) \\ \frac{\Delta \; ; \; \Gamma \vdash e : \forall \alpha. \, \tau \quad \Delta \vdash \sigma \; \textit{type}}{\Delta \; ; \; \Gamma \vdash e : [\sigma/\alpha]\tau} \; (\text{E-}\forall)$$

We define the a family of types only τ by

only
$$\tau = \forall \gamma. (\tau \to \gamma) \to \gamma$$

Task 1 (10 pts). Define

 $in: \forall \alpha. \, \alpha \to \mathbf{only} \, \alpha$

Task 2 (10 pts). Define

out : $\forall \alpha$. **only** $\alpha \rightarrow \alpha$

Task 3 (10 pts). Evaluate *out* (*in* v) for a closed value $v : \tau$.

Task 4 (10 pts). Evaluate in~(out~w) for a closed value w : only τ

Task 5 (10 pts). Circle all statements that are true in the setting of this problem as explained at the beginning of this section.

- (i) Any closed well-typed expression evaluates to a value.
- (ii) There is no closed expression of type $\forall \alpha. \alpha.$
- (iii) We can conclude without knowing the definitions of out and in that

$$(out \circ in) \sim (\lambda x. x) : \forall \alpha. \alpha \rightarrow \alpha$$

(iv) We can conclude without knowing the definitions of out and in that for any closed value $v:\tau$ we have

out
$$(in v) \mapsto^* v$$

(v) For any closed expression of type $e:\tau$ we have $e\sim e:\tau$.

2 Data Abstraction (55 points)

In this problem we explore data abstraction. More specifically, we consider whether the usual convention in C-like languages that 0 = false and n = true for n > 0 is somehow defensible.

For this enterprise we use existential types to represent abstraction and logical equality to reason about representation independence. Recall that the baseline for logical equality is Kleene equality, $e \simeq e'$ which means that there is a value v such that $e \mapsto^* v$ and $e' \mapsto^* v$. As during lectures, we assume that all expressions we are concerned with terminate.

As a reminder, we define $e \sim e'$: τ inductively on the structure of τ , assuming e and e' are closed and of type τ . We then close the relation on both sides under Kleene equality. Here are two cases in the definition:

- (\rightarrow) $e \sim e' : \tau_1 \rightarrow \tau_2$ iff for all $v_1 \sim v'_1 : \tau_1$ we have $e v_1 \sim e' v'_1 : \tau_2$
- (+) $v \sim v' : \tau_1 + \tau_2$ iff either $v = l \cdot v_1$, $v' = l \cdot v'_1$, and $v_1 \sim v'_1 : \tau_1$ or $v = r \cdot v_2$, $v' = r \cdot v'_2$, and $v_2 \sim v'_2 : \tau_2$

Task 1 (5 pts). We define as usual, bool = (false : 1) + (true : 1). Give a necessary and sufficient condition for

$$v \sim v' : bool$$

for closed values v and v' of type *bool* (which is then closed under Kleene equality to obtain $e \sim e'$: *bool*).

 $v \sim v'$: bool iff

Task 2 (5 pts). We define as usual, $nat = \rho \alpha$. (z : 1) + (s : α). Give a necessary and sufficient condition for

$$v \sim v' \cdot nat$$

for closed values v and v' of type nat (which is then closed under Kleene equality to obtain $e \sim e'$: nat).

 $v \sim v'$: nat iff

Now we consider the type

$$\mathsf{BOOL} = \exists \alpha. \, (bool \to \alpha) \otimes (\alpha \to \alpha) \otimes (\alpha \to bool)$$

which represents a module with hidden implementation type τ for α and functions

to : $bool \rightarrow \tau$ map a boolean to its representation

neg : $\tau \rightarrow \tau$ negate the representation

from : $\tau \rightarrow bool$ map a representation back to a boolean

In the first implementation, booleans are represented with type *bool*. For our own reasons, a Boolean value is **internally represented by its negation**.

```
Impl_1 : BOOL
Impl_1 = \langle bool, not, not, not \rangle
```

In the second implementation, booleans are represented with type *nat* where *zero* represents false and all non-zero numbers represent true.

```
Impl_2 : BOOL

Impl_2 = \langle nat, rep, neg, unrep \rangle
```

Task 3 (15 pts). Provide definitions for *rep*, *neg* and *unrep*. You may use the following constructors and also pattern-match against them.

```
False = false \cdot \langle \rangle

True = true \cdot \langle \rangle

Z = fold (z \cdot \langle \rangle)

S x = fold (s \cdot x)
```

Please make sure to explicitly state the type and the definition of each function.

Now we want to prove that these two implementations are logically equivalent and therefore indistinguishable in a language satisfying parametricity.

Task 4 (10 pts). Define an appropriate relation $R:bool \leftrightarrow nat$ between the representations.

Task 5 (10 pts). Prove that $not \sim rep : bool \rightarrow R$.

3 Exceptions in the K Machine (50 points)

In this problem we explore extending our functional language with *exceptions*. For simplicity, we have just two new forms of expressions:

Expressions
$$e ::= \dots | fail | try e catch e'$$

The intended semantics is as follows.

- try e catch e' evaluates e. If it returns normally with value v we ignore the exception handler
 e' and return v. If e raises an exception we handle this exception and continue evaluation
 with e'.
- fail raises an exception instead of returning a value. The innermost enclosing handler (if there is one) will catch this exception; otherwise the whole computation will simply fail.

We do not formalize the usual dynamics, but here are some examples:

```
try v_1 catch v_2 \mapsto^* v_1
try fail catch v_2 \mapsto^* v_2
try (try fail catch v_1) catch v_2 \mapsto^* v_1
try fail catch fail \mapsto^* fail
(try (\lambda x. \text{ fail}) catch v_2) v_1 \mapsto^* fail
```

The last example illustrates the scoping of the try/catch blocks.

Task 1 (10 pts). Give typing rules for the new expressions such that type preservation holds.

Task 2 (15 pts). Extend the K machine so that there are three possible forms of states *s*:

- $k \triangleright e$: evaluate e with continuation k
- $k \triangleleft v$: return value v to continuation k
- k fail: signal an exception to continuation k

In addition to the new rules, indicate if any of the existing rules need to be changed.

Task 3 (5 pts). Recall that we typed continuations as $k \div \tau \Rightarrow \sigma$, expressing that k maps a value of type τ to a final answer of type σ . Provide the typing rules for all new forms of continuation from your answer in Task 2.

Task 4 (10 pts). We write $s:\sigma$ if state s returns a final answer of type σ if it terminates. There are three typing rules, one for each kind of state. We have filled in one for you already supply the other two.

$$\frac{k \div \tau \Rightarrow \sigma \quad \cdot \vdash e : \tau}{k \triangleright e : \sigma}$$

Task 5 (10 pts). State the progress theorem for the extended K machine.

4 Quotation (45 points)

In this problem we explore quotation and staged computation. Recall the judgment Ψ ; $\Gamma \vdash e : \tau$ where Ψ contains expression variables $u : \tau$ and Γ contains ordinary value variables $x : \tau$. We have one new type constructor $\Box \tau$ with the following statics:

$$\frac{\Psi \ ; \ \cdot \vdash e : \tau}{\Psi \ ; \ \Gamma \vdash \mathbf{box} \ e : \Box \tau} \ (\text{I-}\Box) \qquad \frac{\Psi \ ; \ \Gamma \vdash e : \Box \tau \quad \Psi, u : \tau \ ; \ \Gamma \vdash e' : \tau'}{\Psi \ ; \ \Gamma \vdash \mathbf{case} \ e \ \{\mathbf{box} \ u \Rightarrow e'\} : \tau'} \ (\text{E-}\Box)$$

We define the booleans as usual as bool = (false : 1) + (true : 1) and allow definitions by pattern matching that can be desugared into the usual case constructs as in Problem 2. In particular:

```
not: bool \rightarrow bool

not \ \mathsf{False} = \mathsf{True}

not \ \mathsf{True} = \mathsf{False}

and: bool \rightarrow bool \rightarrow bool

or: bool \rightarrow bool \rightarrow bool
```

We have omitted the definitions of *and* and *or*. We assume these three functions as well as the constructors False and True can be used freely, including inside quoted expressions box e.

Task 1 (10 pts). Write a well-typed (that is, properly staged) function

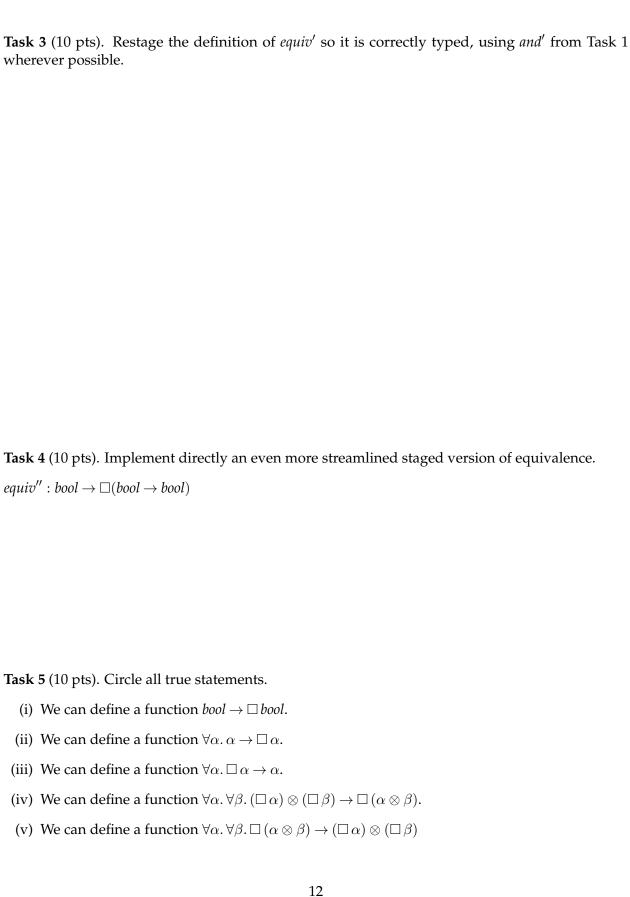
$$and':bool \rightarrow \Box(bool \rightarrow bool)$$

Task 2 (5 pts). The proposed staged definition for equivalence of booleans,

```
equiv': bool \rightarrow \Box(bool \rightarrow bool)

equiv' \ x = \mathbf{box} \ (\lambda y. \ or \ (and \ x \ y) \ (and \ (not \ x) \ (not \ y)))
```

is not well-typed. Explain where and why typing fails.



5 Session Types (50 points)

For a quick reference on session types and processes, see page 18 in the appendix. As usual in this course, we define numbers in binary representation as

```
bin = \bigoplus \{b0 : bin, b1 : bin, \epsilon : 1\}
```

Task 1 (10 pts). Complete the following definition of zero.

```
\vdash zero :: (z : bin)
z \leftarrow zero =
```

Task 2 (10 pts). Complete the following definition of *succ*, which produces on y the sequence of bits representing the successor of x.

```
x: bin \Vdash succ :: (y:bin)
y \leftarrow succ \leftarrow x =
case \ x \ (b0 \Rightarrow
| b1 \Rightarrow
| \epsilon \Rightarrow
```

Task 3 (10 pts). Complete the following definition of the predecessor process *pred*. It produces on y a sequence of bits representing the predecessor of x, where x must represent a strictly positive number. This constraint is expressed by the type

```
pos = \bigoplus \{b0 : pos, b1 : bin\}
x : pos \Vdash pred :: (y : bin)
y \leftarrow pred \leftarrow x =
```

Task 4 (15 pts). Define the following process that calculates the number of bits in x and outputs that number along y. We define this as the number of b0 and b1 labels, and not counting ϵ . You may use zero, succ, and pred as needed, at the indicated types.

```
x: bin \Vdash numbits :: (y:bin) y \leftarrow numbits \leftarrow x =
```

Task 5 (5 pts). We might conjecture that the number of bits in a strictly positive binary number is equal to the floor of the logarithm of that number plus one, that is $numbits(n) = \lfloor log_2(n) \rfloor + 1$ provided n > 0. However, this is not the case. Explain briefly why, and how you might write the logarithm function (you do not need to write any code).

Appendix: Some Inference Rules

A Syntax

Types τ and terms e are given by the following grammars, where I ranges over finite index sets. We present disjoint sums in their n-ary form and lazy pairs in their binary form, because it is these forms we use in this exam.

B Statics, Expressions: $\Gamma \vdash e : \tau$

$$\frac{x:\tau\in\Gamma}{\Gamma\vdash x:\tau}\;(\mathrm{VAR}) \qquad \frac{\Gamma,x:\tau\vdash e:\tau'}{\Gamma\vdash \lambda x.e:\tau\to\tau'}\;(\mathrm{I}-\to)$$

$$\frac{\Gamma\vdash e_1:\tau\to\tau'}{\Gamma\vdash e_1e_2:\tau}\;(\mathrm{E}-\to)$$

$$\frac{\Gamma\vdash e_1:\tau\to\tau'}{\Gamma\vdash e_1e_2:\tau'}\;(\mathrm{E}-\to)$$

$$\frac{\Gamma\vdash e:\tau_j\quad (j\in I)}{\Gamma\vdash j\cdot e:\sum_{i\in I}(i:\tau_i)}\;(\mathrm{I}-+)$$

$$\frac{\Gamma\vdash e:\sum_{i\in I}(i:\tau_i)\quad \Gamma,x_i:\tau_i\vdash e_i:\tau\quad (\forall i\in I)}{\Gamma\vdash \mathsf{case}\;e\;\{i\cdot x_i\Rightarrow e_i\}_{i\in I}:\tau}\;(\mathrm{E}-+)$$

$$\frac{\Gamma\vdash e_1:\tau_1\quad \Gamma\vdash e_2:\tau_2}{\Gamma\vdash \langle e_1,e_2\rangle:\tau_1\otimes\tau_2}\;(\mathrm{I}-\otimes) \qquad \frac{\Gamma\vdash e_0:\tau_1\otimes\tau_2\quad \Gamma,x_1:\tau_1,x_2:\tau_2\vdash e':\tau}{\Gamma\vdash \mathsf{case}\;e_0\;\{\langle x_1,x_2\rangle\Rightarrow e'\}:\tau}\;(\mathrm{E}-\otimes)$$

$$\frac{\Gamma\vdash e_1:\tau_1\quad \Gamma\vdash e_2:\tau_2}{\Gamma\vdash \langle e_1,e_2\rangle:\tau_1\otimes\tau_2}\;(\mathrm{I}-\&) \qquad \frac{\Gamma\vdash e_0:1\quad \Gamma\vdash e':\tau}{\Gamma\vdash \mathsf{case}\;e_0\;\{\langle \rangle\Rightarrow e'\}:\tau}\;(\mathrm{E}-1)$$

$$\frac{\Gamma\vdash e_1:\tau_1\quad \Gamma\vdash e_2:\tau_2}{\Gamma\vdash \langle e_1,e_2\rangle:\tau_1\&\tau_2}\;(\mathrm{I}-\&) \qquad \frac{\Gamma\vdash e:\tau_1\&\tau_2}{\Gamma\vdash e\cdot l:\tau_1}\;(\mathrm{E}-\&_l)\frac{\Gamma\vdash e:\tau_1\&\tau_2}{\Gamma\vdash e\cdot r:\tau_2}\;(\mathrm{E}-\&_r)$$

$$\frac{\Gamma\vdash e:[\rho(\alpha.\tau)/\alpha]\tau}{\Gamma\vdash \mathsf{fold}(e):\rho(\alpha.\tau)}\;(\mathrm{I}-\rho) \qquad \frac{\Gamma\vdash e:\rho(\alpha.\tau)}{\Gamma\vdash \mathsf{unfold}(e):[\rho(\alpha.\tau)/\alpha]\tau}\;(\mathrm{E}-\rho)$$

$$\frac{\Gamma,x:\tau\vdash e:\tau}{\Gamma\vdash \mathsf{fix}(x.e):\tau}\;(\mathrm{Fix})$$

C Statics, Closed Values: $v::\tau$

$$\frac{x : \tau \vdash e : \tau'}{\lambda x.e :: \tau \to \tau'} \text{ (IV-\to)} \qquad \frac{v :: \tau_{j} \quad (j \in I)}{j \cdot v :: \sum_{i \in I} (i : \tau_{i})} \text{ (IV-+)}$$

$$\frac{v_{1} :: \tau_{1} \quad v_{2} :: \tau_{2}}{\langle v_{1}, v_{2} \rangle :: \tau_{1} \otimes \tau_{2}} \text{ (IV-\otimes)} \qquad \frac{\langle v :: \Gamma_{j} \rangle (i : \tau_{j})}{\langle v :: \tau_{j} \rangle (i : \tau_{j})} \text{ (IV-1)}$$

$$\frac{\cdot \vdash e_{1} :: \tau_{1} \quad \cdot \vdash e_{2} :: \tau_{2}}{\langle e_{1}, e_{2} \rangle :: \tau_{1} \otimes \tau_{2}} \text{ (IV-$\&$)} \qquad \frac{v :: [\rho(\alpha.\tau)/\alpha]\tau}{\text{fold}(v) :: \rho(\alpha.\tau)} \text{ (IV-ρ)}$$

D Dynamics: $e \mapsto e'$ and v val

$$\frac{c_1\mapsto e'_1}{e_1\,e_2\mapsto e'_1\,e_2}\,(\mathrm{CE} {\to} 1) \qquad \frac{v_2\,val}{(\lambda x,e_1)\,v_2\mapsto [v_2/x]e_1}\,(\mathrm{R}{\to})$$

$$\frac{e_1\mapsto e'_1}{e_1\,e_2\mapsto e'_1\,e_2}\,(\mathrm{CE} {\to} 1) \qquad \frac{v_1\,val}{v_1\,e_2\mapsto e_1\,e'_2}\,(\mathrm{CE} {\to} 2)$$

$$\frac{v\,val}{i\cdot v\,val}\,(\mathrm{V}{\to} +) \qquad \frac{e\mapsto e'}{i\cdot e\mapsto i\cdot e'}\,(\mathrm{CI}{\to} +) \qquad \frac{e\mapsto e'}{\operatorname{case}\,e\,\{i\cdot x_i\Rightarrow e_i\}_{i\in I}\mapsto \operatorname{case}\,e'\,\{i\cdot x_i\Rightarrow e_i\}_{i\in I}}\,(\mathrm{CE}{\to} +)$$

$$\frac{v_1\,val}{\operatorname{case}\,(j\cdot v_j)\,\{i\cdot x_i\Rightarrow e_i\}_{i\in I}\mapsto [v_j/x_j]e_j}\,(\mathrm{R}{\to} +)$$

$$\frac{v_1\,val}{\langle v_1,v_2\rangle\,val}\,(\mathrm{V}{\to} \otimes) \qquad \frac{e_1\mapsto e'_1}{\langle e_1,e_2\rangle\mapsto \langle e'_1,e_2\rangle}\,(\mathrm{CI}{\to} \otimes) \qquad \frac{v_1\,val\,e_2\mapsto e'_2}{\langle v_1,e_2\rangle\mapsto \langle v_1,e'_2\rangle}\,(\mathrm{CI}{\to} \otimes)$$

$$\frac{e_0\mapsto e'_0}{\operatorname{case}\,e_0\,\{\langle x_1,x_2\rangle\Rightarrow e'\}\mapsto \operatorname{case}\,e'_0\,\{\langle x_1,x_2\rangle\Rightarrow e'\}}\,(\mathrm{CE}{\to} \otimes)$$

$$\frac{v_1\,val\,v_2\,val}{\operatorname{case}\,\langle v_1,v_2\rangle\,\{\langle x_1,x_2\rangle\Rightarrow e'\}\mapsto (v_1/x_1,v_2/x_2]e'}\,(\mathrm{R}{\to} \otimes)$$

$$\frac{v_1\,val\,v_2\,val}{\operatorname{case}\,e_0\,\{\langle \rangle\Rightarrow e'\}\mapsto \operatorname{case}\,e'_0\,\{\langle \rangle\Rightarrow e'\}\mapsto (\mathrm{CE}{\to} \otimes)} \qquad \frac{e_0\mapsto e'_0}{\langle \rangle\,val}\,(\mathrm{V}{\to} \otimes) \qquad \frac{e_0\mapsto e'_0}{\langle \rangle\,val}\,(\mathrm{V}{\to} \otimes) \qquad \frac{e_0\mapsto e'_0}{\langle \rangle\,val}\,(\mathrm{CI}{\to} \otimes) \qquad \frac{e_0\mapsto e'}{\langle \rangle\,val}\,(\mathrm{CI}{\to} \otimes) \qquad \frac{e_1\mapsto e'}{\langle \rangle\,val}\,(\mathrm{CI}{\to} \otimes) \qquad \frac{e_$$

Session Types

Process expressions: forward, spawn, and tail-call

$$\begin{array}{ll} c \leftarrow d & \text{implement } c \text{ by } d \text{ and terminate} \\ x \leftarrow f \leftarrow d_1, \dots, d_n \text{ ; } Q & \text{spawn } f \text{, passing it channels } d_1, \dots, d_n \\ & f \text{ will provide a fresh channel } a \text{ to client } [a/x]Q \\ c \leftarrow f \leftarrow d_1, \dots, d_n & \text{tail call to } f \text{ providing } c \text{ and using } d_1, \dots, d_n \end{array}$$

Session types and process expressions: message passing

Type	Provider	Client	Continuation Type
$c: \oplus \{\ell: A_\ell\}_{\ell \in L}$	(c.k; P)	case $c \{\ell \Rightarrow Q_{\ell}\}_{\ell \in L}$	$c: A_k$
$c: \&\{\ell: A_\ell\}_{\ell \in L}$	case $c \{\ell \Rightarrow P_{\ell}\}_{\ell \in L}$	(c.k;Q)	$c: A_k$
c:1	${f close}\ c$	$\mathbf{wait}\ c\ ; \ Q$	(none)

Statics (where $|y_1: A_1, ..., y_n: A_n| = y_1, ..., y_n$)

$$\frac{1}{y:A \Vdash (x \leftarrow y) :: (x:A)} \text{ id}$$

$$\frac{\Delta_1 \Vdash f :: (x:A) \quad \Delta_2, x:A \Vdash Q :: (z:C)}{\Delta_1, \Delta_2 \Vdash (x \leftarrow f \leftarrow |\Delta_1| \;; \; Q) :: (z:C)} \text{ spawn } \frac{\Delta \Vdash f :: (x:A)}{\Delta \Vdash (x \leftarrow f \leftarrow |\Delta|) :: (x:A)} \text{ tail}$$

$$\frac{k \in L \quad \Delta \Vdash P :: (x:A_k)}{\Delta \Vdash (x.k \;; \; P) :: (x:\oplus \{\ell:A_\ell\}_{\ell \in L})} \oplus R \qquad \frac{(\text{for all } \ell \in L) \quad \Delta, x:A_\ell \Vdash Q_\ell :: (z:C)}{\Delta, x:\oplus \{\ell:A_\ell\}_{\ell \in L} \Vdash (\text{case } x \; \{\ell \Rightarrow Q_\ell\}_{\ell \in L}) :: (z:C)} \oplus L$$

$$\frac{(\text{for all } \ell \in L) \quad \Delta \Vdash P_\ell :: (x:A_\ell)}{\Delta \Vdash (\text{case } x \; \{\ell \Rightarrow P_\ell\}_{\ell \in L}) :: (x:\& \{\ell:A_\ell\})} \& R \qquad \frac{k \in L \quad \Delta, x:A_k \Vdash Q :: (z:C)}{\Delta, x:\& \{\ell:A_\ell\}_{\ell \in L} \Vdash (x.k \;; Q) :: (z:C)} \& L$$

$$\frac{\Delta \Vdash Q :: (z:C)}{\Delta, x:1 \Vdash (\text{wait } x\;; Q) :: (z:C)} 1L$$

Dynamics

$$\begin{array}{llll} (\mathrm{id}C) & \operatorname{proc}\ P\ d, \operatorname{proc}\ (c \leftarrow d)\ c & \mapsto & \operatorname{proc}\ ([c/d]P)\ c \\ (\operatorname{spawn}C) & \operatorname{proc}\ (x \leftarrow f \leftarrow \overline{d}\ ; Q)\ c & \mapsto & \operatorname{proc}\ ([\overline{d}/\overline{y},a/x]P)\ a, \operatorname{proc}\ ([a/x]Q)\ c & (a\ \mathrm{fresh}) \\ & & & \operatorname{where}\ x \leftarrow f \leftarrow \overline{y} = P \\ (\mathrm{tail}C) & \operatorname{proc}\ (c \leftarrow f \leftarrow \overline{d})\ c & \mapsto & \operatorname{proc}\ ([\overline{d}/\overline{y},c/x]P)\ c & \operatorname{where}\ x \leftarrow f \leftarrow \overline{y} = P \\ (\oplus C) & \operatorname{proc}\ (c.k\ ; P)\ c, \operatorname{proc}\ (\operatorname{case}\ c\ \{\ell \Rightarrow Q_\ell\}_{\ell \in L})\ d & \mapsto & \operatorname{proc}\ P\ c, \operatorname{proc}\ Q\ d \\ (\&C) & \operatorname{proc}\ (\operatorname{case}\ c\ \{\ell \Rightarrow P_\ell\}_{\ell \in L})\ c, \operatorname{proc}\ (c.k\ ; Q)\ d & \mapsto & \operatorname{proc}\ P_k\ c, \operatorname{proc}\ Q\ d \\ (1C) & \operatorname{proc}\ (\operatorname{close}\ c)\ c, \operatorname{proc}\ (\operatorname{wait}\ c\ ; Q)\ d & \mapsto & \operatorname{proc}\ Q\ d \end{array}$$