Lecture Notes on
Elaboration

15-814: Types and Programming Languages
Frank Pfenning

Lecture 11
Tuesday, October 6, 2020

1 Introduction

We have spent a lot of time analyzing and designing the essence of a pro-
gramming language, starting from first principles. The focus has been on
the statics (the type system), the dynamics (the rules for how to evaluate
programs), and understanding the relationship between them in a mathe-
matically rigorous way.

There is, of course, a lot more to a real programming language. At
the “front end” there is the concrete syntax according to which the program
text is parsed. The result of parsing is either some abstract syntax or an
error message if the program is not well-formed according to the grammar
defining its syntax. At the “back end” there are concerns about how a
language might be executed efficiently, or compiled to machine language so it
can run even faster. In this course we will say little about issues of grammar,
concrete syntax, parsers or parser generators, because we want to focus on
the deeper semantic issues where we have accumulated a lot of knowledge
about language design.

In today’s lecture we will look at elaboration, which is a translation medi-
ating between specific forms of concrete syntax and internal representation
in abstract syntax. Elaborating the program allows us to provide some
conveniences that make it easy to write and read concise programs without
giving up the sound underlying principles we have learned about in this
course so far.

LECTURE NOTES TUESDAY, OCTOBER 6, 2020

O ® N G e W N e

I S T ST N T T S N N S S
I & G R O N R S L ®» 9o G oRE ® R~ = o

L11.2 Elaboration

2 An Example: Binary Numbers

Before binary numbers, we introduce the concrete syntax of LAMBDA when
applied to call-by-value functional programs (recognized by the . cbv ex-
tension). We see a few items of concrete syntax. We use $ for recursion, both
at the level of types (to stand for p) and at the level of terms (to stand for
fix). Instead of writing l.e and r.e (with different fonts being unavailable
in the ASCII source) we write 'l e and 'r e (pronounced “tick 1” and “tick
r”). Finally, we interpose the keyword of between the subject of the case
expressions and the branches in order to avoid an ambiguous grammar.

We also see the new kind of declaration eval x = e which evaluates
e —* v and defines z to stand for the resulting value v. Remember that this
is quite different from the normal form of ¢, as we have discussed multiple
times.

type nat = $a. 1 + a % == 1 + nat

decl zero : nat

decl succ : nat —-> nat

defn zero = fold (‘1 ()) % 7 fold (1.<>)

defn succ = \n. fold ('r n)

eval two = succ (succ zero)

decl pred : nat -> nat

defn pred = \n. case (unfold n) of (‘1 _ => zero | 'r m => m)
eval one = pred two

decl plus : nat —-> nat -> nat

defn plus = $plus. \n. \k.
case (unfold n)
of (/1 _ =>k | "r m => succ (plus m k))

eval three plus two one

decl times : nat -> nat -> nat
defn times = S$Stimes. \n. \k.
case (unfold n)
of (1 _ => zero | 'r m => plus (times m k) k)

eval six = times three two

Listing 1: Unary natural numbers in call-by-value LAMBDA

LECTURE NOTES TUESDAY, OCTOBER 6, 2020

A Ul e W N =

Elaboration L11.3

The unary representation of numbers is perfect from the foundational
point of view, but impractical. In particular, representation of numbers
become very large, and operations on them very slow. But we already know
a better representation: binary numbers, which are (finite) sequences of bits
0and 1.

Binary numbers (type bin) are generated by three constructors:

1. e : bin where e represents 0,
2. b0 : bin — bin where b0 7 represents 2z, and
3. b1 : bin — bin where b1 T represents 2z + 1.

This representation means that we see the least significant bit first. For
example, 6 = (110)2 wwould be represented by b0 (b1 (b1 e)). This “little-
endian” representation is well-suited for operations on binary numbers; the
representation where we write the bits in the order we are used to not so
much (consider, for example, the increment function defined below).

The types of the constructors lead us to the recursive equation

bin pa.a+ (a+1)
bin + (bin + 1)

11l

and the definitions
b0 = Az.fold (1-x)
bl = Az.fold (r-1-x)
e = fold(r-r-())

On this representation we can now define the binary increment function inc.
We would like it to satisfy the specification

inc (b0 x) = blx
inc (b1 x) = b0 (inc x)
inc (e) =ble

From this we can derive a closed form definition, where we have to be
respect that fact that inc is defined recursively.

oo

type bin = $a. a + (a + 1) == bin + (bin + 1)

decl b0 : bin -> bin

decl bl : bin -> bin
decl e : bin

LECTURE NOTES TUESDAY, OCTOBER 6, 2020

10
11
12
13
14
15
16
17
18
19
20
21
22

L11.4 Elaboration

defn b0 = \x. fold ('1 x)
defn bl = \x. fold ('r ("1 x))
defn e = fold ('r ('r ()))
decl inc : bin -> bin
defn inc = $inc. \x. case (unfold x)
of ('l y =>bly
| 'r y => case y
of "l z => b0 (inc z)

(
| "r z => bl e
)

eval _6 = b0 (bl (bl e))
eval _7 = inc _6

eval 8 = inc _7

Listing 2: Binary numbers in call-by-value LAMBDA

We see the output of the last three evaluations

defn 6 = fold 'l fold '"r 'l fold '"r 'l fold 'r '/)
defn 7 = fold '"r ']l fold 'r 'l fold 'r 'l fold '’ r ()
defn 8 = fold 'l fold 'l fold 'l fold 'r 'l fold 'r 'r ()

(

r
r

which we can recognize as the binary representations of 6, 7, and 8 where
1 represents a bit 0, ' r " 1 represents a bit 1, and ' r ’ r represents the
terminator for the bit sequence.

One step towards a more natural (and readable) representation is to
generalize the binary sum to an variadic sums, which we discuss in Section 4

3 Isomorphism Revisited

The representation of binary numbers has a feature which is common in the
representation of complex data, but haven’t seen so far: there are multiple
different representations of the same data. For example, e and b0 e both
represent the number 0, because 2 x 0 = 0. In fact, each number has
infinitely many representations: we can just add leading zeros to every
representation. In Exercise 1 we explore how to remove this ambiguity from
the representation of binary numbers, but this is certainly not possible in
other examples.

We could try to show that the translation between unary and binary
numbers are an isomorphism (which will fail). For that purpose, we define

LECTURE NOTES TUESDAY, OCTOBER 6, 2020

O ® N U R W N =

T S T S T S S Y
N = S © ®» NI o G k& ® N = O

Elaboration L11.5

the following translations:

nat2bin : nat — bin
bin2nat : bin — nat

These serve as the “strawman” proposal for a pair of functions witnessing
an isomorphism. We write them here in the concrete syntax of LAMBDA.

decl nat2bin : nat —-> bin
decl bin2nat : bin -> nat

(*
* natZbin zero = e
* natZbin (succ n) = inc (nat2bin n)
*)
defn nat2bin = $nat2bin. \n.
case (unfold n) of (‘1 _ => e | '"r m => inc (nat2bin m))

(*
* binZnat (b0 x) = times two (binZnat x)
* binZnat (bl x) = succ (times two (binZnat x))
* binZnat (e) = zero
*)
defn bin2nat = $bin2nat. \x.
case (unfold x)

of ('l yv => times two (binZ2nat y)

(
| 'r v => case y of ('l z => succ (times two (bin2nat z))
|

"r z => zero
)
)

However, these two functions do not form an isomorphism because any
alternative form of a binary number with leading zeros, when mapped to a
unary number and back will be standardized in the sense that the leading
zeros will be erased.

standardize : bin — bin
standardize = mnat2bin o bin2nat

On the domain of binary numbers the function standardize represents a
retract, mapping any number to its standard form without leading zeros.
While common, ambiguous representations such as bin have their dan-
gers. In particular, we could define functions that make no sense at all from
the numerical standpoint because they behave differently on different repre-
sentations of the same number! For example, the function bad below returns

LECTURE NOTES TUESDAY, OCTOBER 6, 2020

G W N =

L11.6 Elaboration

true for the standard representation and false for a nonstandard one, even
though these two representation are supposed to be indistinguishable.

decl bad : bin -> 1 + 1
defn bad = \x. case (unfold x) of (1 x => 'r () | '"ry =>"1

eval tt = bad (b0 e)
eval ff = bad e

It is therefore important, when working on ambiguous representation, to
keep in mind and reason about whether functions are correct with respect
to different representations of the same elements. In more general type
theories this kind of construction with the guarantee that accompanies it is
called a quotient type.

4 Variadic Sums

Once we know that the sum is associative and commutative with unit 0 we
can introduce a more general notation that is useful for practical purposes:
rather than just using labels 1 and r for a binary sum, we can allow a finite
set I of tags or label (think of them as strings) and write

(i1 :7m1)+ -+ (in : ™)

where each summand is marked with a distinct label 7. We also write this in
abstract syntax as
Z(z i)

i€l

The empty type 0 arises from I = { } and we might define

bool = (true:1)+ (false: 1)

option T = (none:1)+ (some:T)

order (less: 1) + (equal : 1) + (greater : 1)
nat (zero : 1) + (succ : nat)

pa. (zero : 1) + (succ : «)

11l

list = (nil 1)+ (cons T x list T)
a. (nil : 1) 4+ (cons : 7 X)
bin = (bO :bin) + (bl : bin) + (e : 1)

= pa.(bO:a)+(bl:a)+ (e: 1)

LECTURE NOTES TUESDAY, OCTOBER 6, 2020

Elaboration L11.7

This generalized form of sum also comes with a generalized constructor
(allowing any label of a sum) and case expression (requiring a branch for
each label of a sum). For example, we might have the following definitions.

bin = pa.(b0:a)+ (bl:a)+(e:1)

b0 : bin— bin

bl : bin—bin

e . bin

b0 = Az.fold (bO-)

bl = Az.fold (bl--x)

e = fold(e-())

inc : bin— bin

inc = fixinc. \z. case (unfold z)
(bO0-y=10bly
| bl -y = b0 (inc y)
le-_=1ble)

5 *“Syntactic Sugar”

A simple form of elaboration is to eliminate some simple forms of “syntactic
sugar” and translate them into an internal form to simplify downstream
processing. A good example are the following definitions:

bool £ (true: 1)+ (false: 1)
true £ true- ()
false £ false- ()

L

if e1 then e3 else e3 case ej (true- _ = ey | false: = e3)

Here, we used another common convention, name we use an underscore (_)
in place of a variable name if that variable does not occur in its scope (here,
this scope would be ey for the first underscore and e3 for the second. Such a
syntactic transformation could take place before or after type checking.

6 Data Constructors and Pattern Matching

As another example, consider the definition of the natural numbers in unary
form:
nat = pa. (zero : 1) + (succ : @)

LECTURE NOTES TUESDAY, OCTOBER 6, 2020

L11.8 Elaboration

This is unnecessarily difficult to read because we have to remember that o
really is supposed to stands for nat on the right hand. Easier to read is

nat = (zero : 1) + (succ : nat)

Moreover, the labels may sometimes be a bit awkward to use, so perhaps
we could “automatically” define

zero : 1 —nat
Zero = A\u.zero-u
succ : nat — nat
succ = An.succ-n

Notice there the difference between the function succ (in italics) and the label
succ (in bold). Maybe we could even go further and eliminate the 1 — nat
because we already know that 1 — 7 = 7, in which case we would obtain

zero : nat
zero = zero- ()

Finally, it would be nice if we could simplify pattern matching as well.
Instead of, for example,

pred : nat — nat
pred = An.case (unfold n) (zero-_ = zero | succ-n’ = n')

it would be easier to read and understand if we could write

pred : nat — nat
pred zero zero
pred (succn’) = n’

This would somehow only make sense if “zero” was understood not only as
a constant of type nat, but also that it corresponded to a label zero with the
same name so we can elaborate it into the case of the internal definition of
predecessor shown just before. And similarly for succ and succ.

In fact, modern functional languages such as Haskell, OCaml, or Stan-
dard ML provide syntax for data type definitions that provide essentially
the above functionality, and more. In ML we would write:

datatype nat = Zero | Succ of nat
fun pred Zero = Zero
| pred (Succ n’) = n’

LECTURE NOTES TUESDAY, OCTOBER 6, 2020

Elaboration L11.9

In OCaml it might be

type nat = Zero | Succ of nat;;
let pred n = match n with

| Zero —> Zero

| Succ n’ -> n';;

And Haskell:

data Nat = Zero | Succ Nat

pred :: Nat —-> Nat
pred Zero = Zero
pred (Succ n’) = n’

The type we gave here for pred is optional, but it is often helpful to explicitly
state the type of a function. We should also keep in mind that the dynamics
of Zero and Succ is different in Haskell because it is a call-by-need (“lazy”)
language.

We refer to Zero and Succ as data constructors, which means they are
simultaneously functions (or constants in the case of zZero) to constructs
values of a sum, and labels so we can pattern-match against them.

7 Generalizing Sums

Let’s recall our language so far:

Types T = a|lnon|nxn|l|n+mn|0]parT
Expressions e = =z (variables)
| Az.el|erer (=)
| (e1,e2) | case e ({x1,x2) =€) (x)
| () lcasee ()= e 1)
| l-e|r-elcasee(l-m1 = e1|r-22=€2) (+)
| casee () (0)
| fold e | unfold e (p)
| flfixfe (recursion)

Except for functions and recursive types, the destructors are of the form
case e (...). We will now unify these constructs even more, replacing the

LECTURE NOTES TUESDAY, OCTOBER 6, 2020

L11.10 Elaboration

primitive unfold e by a new one, case e (fold # = ¢’). We can then define
Unfold as a function

Unfold : pa.Tm— [pa.7/a]T
Unfold = M\r.case z (fold z =)

See Exercise 3 for more on this restructuring of the language.

Streamlining our language a little bit further, we now officially generalize
the sum from binary to n-ary, allowing labels i to be drawn from a finite
index set I. The case construct for the sums then has a branch for each i € I.
Our previous constructs are a special case, with 71 + 72 = Picqry(iTi) =

(1:7) +(r:m)and 0 2 Y ico(i).

Types T = a|ln—=on|nxn|l]| Y 60:n)] parT
Expressions e = =z (variables)

| Azr.e|erer (=)

| (e1,e2) | case e ({x1,x2) = €') (%)

() lcasee ()= e 1)

| i-e|casee (i-x=€)ies >2)

| fold e | case e (fold z = ¢’) (p)

| flfixfe (recursion)

Except for functions, all destructors are now case-expressions. Functions are
different because values are of the form Az. e that we cannot match against
because we assumed that they are not observable outcomes of computation.

For sums, we have the following generalized statics and dynamics. Key
is that we have to check all branches of a case expressions, and all of them

LECTURE NOTES TUESDAY, OCTOBER 6, 2020

Elaboration L11.11

have the same type 7.
kel Tke:mg
PEk-e:) e (i:n)

F'ke:> e i:m) Toagimbe;:m (forallie)

tp/sum

tp/cases
I'tcasee (i-az; = €))ier: 7

e value
—— val/sum

1 - e value

e e .
: —— step/inject
i-er—i-é

ey — €

step/cases,,
case eg (i-x; = €)icr — case e} (i - x; = €})icr

kel voalue

. / - step/cases/inject
case (k- v) (i-x; = €))icr — [v/x1]e],

8 Nesting Case Expressions

As another example, let’s consider a function half on natural numbers that is
supposed to round down. We write it down in a pattern-matching style.

half : nat — nat
half zero = zero
half (succ zero) = zero

half (succ (succn”)) = succ (half n”)

This could be elaborated into two nested case expressions and a use of
recursion. To avoid an even deeper nesting of cases, we use Unfold as
defined in the previous section.

half = fix h. An. case (Unfold n) (zero - _ = zero
| succ - n' = case (Unfold n') (zero - _ = zero
| succ - n”" = succ (h n")))

Such nested case expressions naturally lead to the question on how
to define arbitrarily nested patterns and how they should be typed and
evaluated, which we will discuss in the next lecture.

LECTURE NOTES TUESDAY, OCTOBER 6, 2020

L11.12 Elaboration

Exercises

Exercise 1 It is often intuitive to define types in a mutually recursive way.
As a simple example, consider how to define binary numbers in standard
form, that is, not allowing leading zeros. We define binary numbers in stan-
dard form (std) mutually recursively with strictly positive binary numbers
(pos).
std (e: 1)+ (bO: pos) + (bl : std)
pos (b0 : pos) + (b1l : std)
(i) Using only std, pos, and function types formed from them, give all
types of ¢, b0, and b1 defined as follows:

b0 = Az.fold (bO - z)
bl = Mz.fold (bl-z)
e = fold(e-())

1R

(ii) Define the types std and pos explicitly in our language using the p type
former so that the isomorphisms stated above hold.

(iii) Does the function inc from Section 4 have type std — pos? You may use
all the types for b0, b1 and e you derived in part (i). Then either explain
where the typing fails or indicate that it has that type. You do not need
to write out a typing derivation.

(iv) Write a function pred : pos— std that returns the predecessor of a strictly
positive binary number. You must make sure your function is correctly
typed, where again you may use all the types from part (i).

Exercise 2 It is often convenient to define functions by mutual recursion.
As a simple example, consider the following two functions on bit strings
determining if it has even or odd parity.

bin >~ (e:1)+ (b0 : bin) + (bl : bin)
even . bin — bool

odd : bin — bool

even e = ftrue

even (b0 x) = evenx

even (bl z) = oddx

odd e = false

odd (b0 x) = oddx

odd (bl z) = evenx

LECTURE NOTES TUESDAY, OCTOBER 6, 2020

Elaboration L11.13

(i) Write a function parity with a single fixed point constructor and use
it to define even and odd. Also, state the type of your parity function
explicitly.

(ii) More generally, our simple recipe for implementing a recursively spec-
ified function using the fixed point constructor in our call-by-value
language goes from the specification

f T T — T

fzr = hfx
to the implementation
f = fixg. Ax.hgx

It is easy to misread these, so remember that by our syntactic conven-
tion, h f x stands for (h f) x and similarly for h g z. Give the type of
h and show by calculation that f satisfies the given specification by
considering f v for an arbitrary value v of type 7.

(iif) A more general, mutually recursive specification would be

f LT —> T
g : 01— 09
fz = hifgx
gy = hafgy

Give the types of hq and hs.

(iv) Show how to explicitly define f and g in our language from h; and
ho using the fixed point constructor and verify its correctness by cal-
culation as in part (ii). You may use any other types in the language
introduced so far (pairs, unit, sums, polymorphic, and recursive types).

Exercise 3 In the language where the primitive unfold has been replaced by
pattern matching, we can define the following two functions:

Unfold : pa.T— [pa.T/a]T
Unfold = Axz.case z (fold z = x)

Fold : pa.T/alt = pa.T
Fold = Az.fold z

Prove that Fold and Unfold are witnessing a type isomorphism.

LECTURE NOTES TUESDAY, OCTOBER 6, 2020

	Introduction
	An Example: Binary Numbers
	Isomorphism Revisited
	Variadic Sums
	``Syntactic Sugar''
	Data Constructors and Pattern Matching
	Generalizing Sums
	Nesting Case Expressions

