Types and Programming Languages (15-814),
Fall 2018
Assignment 9: Call-by-Need and Session Types

Contact: 15-814 Course Staff
Due Thursday, December 6, 2018, 11:59pm

This assignment is due by 11:59pm on the above date and it must be submitted
electronically as a PDF file on Canvas. Please use the attached template to typeset
your assignment and make sure to include your full name and Andrew ID. As
before, problems marked “WB” are subject to the whiteboard policy; all other
problems must be done individually.

Task 0 (0 points). How long did you spend on this assignment? Please list the
questions that you discussed with classmates using the whiteboard policy.

Task 1 (5 points). Please take a few minutes to complete the Faculty Course
Evaluation and TA evaluations! You can complete the FCEs at https://www.cmu.
edu/hub/fce/. We are particularly interested in suggestions for improving the
course for future iterations. You can complete the two parts of the TA evaluation
here:

e https://www.ugrad.cs.cmu.edu/ta/F18/feedback/
e https://www.ugrad.cs.cmu.edu/ta/F18/freeform/

Once you have completed all three evaluations, you can claim your five points
by affirming that you have done so.

1 Implementing Call-by-Need

Our machine so far (K, S, and S,)) implemented a call-by-value evaluation strategy
for functions applications. In call-by-value, whenever we evaluate e ez, we first
evaluate e; to, say, Az. ¢}, then es to v and then proceed by evaluating [v2/x]e].
This might sometimes do unnecessary work. For example, (Az. ()) (fix y. y) will
not terminate, even though it 5-reduces to ().

1

https://piazza.com/class/jl9thnft7ibun
https://piazza.com/class/jl9thnft7ibun?cid=8
https://www.cmu.edu/hub/fce/
https://www.cmu.edu/hub/fce/
https://www.ugrad.cs.cmu.edu/ta/F18/feedback/
https://www.ugrad.cs.cmu.edu/ta/F18/freeform/

Another strategy is call-by-name. In call-by-name, whenever we evaluate e ez
we first evaluate e; to, say, Az. ¢} and then [ez/x]e]. This might also sometimes
do unnecessary work. For example, (Az.(x, z)) e will evaluate e twice because it
steps to (e, e).

A strategy designed to avoid both issues is call-by-need. In call-by-need,
whenever we evaluate e; e; we start as before by evaluating e;, yielding, say,
Az. e). Now we do not yet evaluate e but substitute a reference d to ey for z and
evaluate e;. When we encounter d during evaluation the first time we evaluate ey
to a value, say, vo. We then remember the value v; so that any further reference
to d just returns vy without re-evaluating es.

Your task will be to specify a version of the S machine that implements call-by-
need. For your reference, we previously had the following rules for call-by-value
functions and for locations in the S machine:

eval (e1ea) d +— evalej dj,contd; (_e2)d (dy fresh) (1.1)
Icell dy c1,contdy (_ea)d +— evaleyds,contdy (di_)d (dg fresh) (1.2)
Icell di (\x. €}),!cell dy co,contdy (dy_)d +— eval ([do/z]€}) d (1.3)
Icell dy c,evaldi d +— lcellde (1.4)
eval (Az.e)d +— lcelld (Az.e) (1.5)

Task 2 (20 points, WB). Implement call-by-need evaluation of function applica-
tion on the S machine, replacing the rules above. If you keep any of the rules 1.1
to 1.5, state which ones.

Feel free to define a new kind of semantic object besides eval, cont, and !cell
to track references to function arguments, but consider carefully if it should be
ephemeral or persistent.

Task 3 (5 points, WB). Verify by showing the key steps of computation in each
case that

1. eval ((Az.()) (fixy.y)) do terminates, and

2. eval ((A\z.(z,z))e) dp evaluates e only once, where you should assume
evaluation of e terminates.
2 Programming with Session Types

2.1 String Processing

Given some alphabet X, we can encode strings as processes of type

str = ®{o :str,$: 1},e5.

In particular, we saw that binary numbers were strings over ¥ = {0,1}. Assume
throughout that ¥ = {a, b}. This means that

str = ®{a : str,b:str,$: 1}.

We can then encode literal strings in a manner analogous to how we encoded
binary numbers. For example,

- IF Taabbb™ :: (s : str)
s + Taabbb? = s.a; s.a; s.b; 5.b; 5.b; 5.9; close s

In verbatim syntax we might write

|- example :: (s : str)
s <- example = s.a ; s.a ; s.b ; s.b ; s.b ; 5.8 ; close s

You may use verbatim syntax in this style in your answers.

2.1.1 String equality

To help you warm up, we will begin by implementing string equality. Let the
type of Booleans be bool = &{true : 1, false : 1}. The following process may be
of use to you in Task 5.

Task 4 (5 points, WB). Implement a process s : str I flush :: (0 : 1) that discards

all of the messages on s.

Note. You may use the shorthand “_" to match all other possible labels in a
case statement. For example, you may write case c { Iy = e; |l = e2 | _ = e3}
to transition to process ez whenever c provides a label other than /; and [».

Task 5 (10 points, WB). Implement a process s; : str, s : str |- eq :: (r : bool).
It should send the message true over r and terminate if and only if the strings
s1 and sp produce the same sequence of characters (labels); otherwise, it should
send false and terminate.

2.1.2 String reversal

Next, we will implement a string reversal process
s :strlkrev:: (r: str)

that provides the reversal of s on r.

Task 6 (15 points, WB). Implement the string reversal process
s:strlkrev:: (r:str).

You may define auxiliary processes as you see fit. You do not need to be concerned
about efficiency.

As an example, the output on the channel e of the following process should
be true:

IF s1 <= Tab™; s9 <= Tba;r — rev < sg;e < eq < s1,r :: (e : bool).

2.2 A Polish Notation Calculator

In grade school, you likely learned the infix notation for arithmetic operators. An
alternative notation is the prefix notation, sometimes called the Polish notation. In
this notation, the arithmetic operators come before their operands. For example,
we parse + x 1+234as +(x(1,+(2,3)),4), corresponding to the infix expression
1 x (24 3) + 4. In order to avoid the complexity of arbitrary numbers, we write a
calculator for arithmetic modulo 2. In other words, there are only two values 0
and 1 with their expected modular interpretation. For example, 1 x 1 =1 and
1+1=0.

We will implement a simple calculator for modular arithmetic operations
in Polish notation involving +, x, and integers 0 and 1. We let the type of
expressions exp be

exp = {0 : exp,1:exp,+ :exp,x :exp,F:1,$:1},
where E stands for an error. We encode expressions in the obvious way, e.g.,

FT4+x1107:: (e: exp)
e+ T+ x1107=e.+;e.x;e.1;e.1;e.0;e.9; close e

In verbatim syntax, we might write

|- example :: (e : exp)
e <- example = e.+ ; e.*x ; e.1 ; e.1l ; .0 ; e.$; close e

You may use verbatim syntax in this style in your answers.

Our calculator process eval will have the type €’ : exp I eval :: (e : exp).
We need to include an error case to cope with malformed arithmetical expres-
sions. Consider for example the expression “x+", which induces the process
Ik e.x;e.+;e.9$; close e. Because we cannot evaluate it, we should abort with an
error, which we do by sending the label E and closing the channel.

Task 7 (5 points, WB). Implement a process
e:exp I flush :: (0: 1)
that discards all of the messages on e. Using this, implement a process
¢’ : exp I abort :: (e : exp)
that aborts the computation by sending the label E along e and terminating.
Task 8 (10 points, WB). Implement the processes

e : exp IF plus :: (e : exp)

¢’ : exp I times :: (e : exp)
The process plus should behave as follows: if the next two labels on €’ are integers,
plus should output their sum on e and then forward. Otherwise, plus should

abort by sending the error label £ and terminating. The process times should
behave similarly, except by implementing multiplication.

Task 9 (10 points, WB). Implement the process ¢’ : exp I eval :: (e : exp).
Whenever it encounters a malformed expression, it should abort with an error.
The process

ke’ +T+1 x 117e «+ eval < ¢ :: (e : exp)

should be indistinguishable from the process "0 to any process using e.

A Verbatim Syntax for Session Types

We have provided a table of suggested verbatim syntax:

Forwarding

T <y X <-y

Close channel x

close x close x

Wait for x and continue as P

wait = ; P wait x ; P

Caseonz

casexz {l=P|_=Q} cassex {1=>P | _=>Q1}
Send [over z, continue as P

x.l; P x.1 ; P

Typing judgment

a:Ab:BlFP:(c:C) a: A, b:BI|-P:: (c:0)
Named process definition

c4 foo+a,b=P c <- foo <- a, b =P
Spawn named process

c<4 bar<+a,b;Q c <- bar <- a, b ; Q

	Implementing Call-by-Need
	Programming with Session Types
	String Processing
	String equality
	String reversal

	A Polish Notation Calculator

	Verbatim Syntax for Session Types

