
Types and Programming Languages (15-814),
Fall 2018

Assignment 8: Proofs and Stages

Contact: 15-814 Course Staff

Due Tuesday, November 20, 2018, 11:59pm

This assignment is due by 11:59pm on the above date and it must be submitted
electronically as a PDF file on Canvas. Please use the attached template to typeset
your assignment and make sure to include your full name and Andrew ID. As
before, problems marked “WB” are subject to the whiteboard policy; all other
problems must be done individually.

Task 0 (0 points). How long did you spend on this assignment? Please list the
questions that you discussed with classmates using the whiteboard policy.

1 Staging Computation

Recall we defined binary numbers to be ρ(α. (ε : 1) + (b0 : α) + (b1 : α)), or
equivalently in concrete syntax:

data Bin = Eps | B0 Bin | B1 Bin

We also implemented multiplication and addition functions:

mult : Bin -> Bin -> Bin

plus : Bin -> Bin -> Bin

You can treat these functions as built-in and use them freely below. You are
welcome to use the following concrete syntax for box e and case e {box u⇒ e′}:

box e

case e { box u => e’ }

You should assume our language supports lazy and eager products, sums, recur-
sive types, general recursion, etc.

1

https://piazza.com/class/jl9thnft7ibun
https://piazza.com/class/jl9thnft7ibun?cid=8

Task 1 (10 points, WB). Give an exponentiation function

exp : bin→ �(bin→ bin)

where the first argument of type bin is the exponent and the other argument is
the base.

Task 2 (10 points, WB). Give a multiplication function

mult : bin→ �(bin→ bin).

If this cannot be done, briefly explain why.

Recall we defined a function eval : ∀α.�α→ α by

eval = λx.case x {box u⇒ u}.

Task 3 (10 points, WB). For each of the following types τ , define a closed term
liftτ : τ → �τ satisfying v ' (eval ◦ liftτ)(v) for all values v : τ . If this cannot be
done for a particular τ , briefly and informally explain why.

1. τ = bin,

2. τ = bin⊗ bin, and

3. τ = bin & bin.

Hint. Do not forget what you have learned from past assignments.

2 Proofs and Programs

Task 4 (10 points, WB). Annotate the following proof with proof terms:

: B ⊃ C
f

: A⊃B
g

: A
a

: B
⊃E

: C
⊃E

: A⊃ C
⊃Ia

: (A⊃B)⊃ (A⊃ C)
⊃Ig

: (B ⊃ C)⊃ (A⊃B)⊃ (A⊃ C)
⊃If

2

Hint. To save time, copy-paste the task statement into the solution environment
and fill in the [] in the \fillmein[] occurrences in the template!

Task 5 (10 points, WB). For each of the following proof terms witnessing the
proposition (>∧>)⊃(⊥∨>)⊃(>∧>), give the corresponding natural deduction
proof.

1. λx.λy.〈|x · l , 〈| |〉|〉,

2. λx.λy.case y {l · w ⇒ case w { } | r · v ⇒ 〈|v, v|〉}.

Make sure to label all of your inferences with the names of the rule you used
(⊃Ix, x, ⊃E, ∧I , ∧E1, ∧E2, ∨I1, etc.).

The most general proposition witnessed by a proof term x is the proposition G
such that

• x is a proof term of G, i.e., x : G, and

• for any other proposition P , if x : P , then there exists a substitution σ
mapping proposition variables in G to propositions such that P = σG.

For example, the most general proposition for the proof term λx.x is A⊃A, even
though λx.x is also a proof term for ⊥ ⊃ ⊥ and (B ∨ C ∧ >) ⊃ (B ∨ C ∧ >).
Similarly, the most general proposition for λx.λy.〈|x, y|〉 is A ⊃ B ⊃ A ∧ B. The
concept of the most general proposition witnessed by a proof term is analogous
to the concept of the most general type for a term.

Task 6 (10 points, WB). For each of the following proof terms, give the most
general proposition it witnesses:

1. λx.λy.〈|x · l , 〈| |〉|〉,

2. λx.λy.case y {l · w ⇒ case w { } | r · v ⇒ 〈|v, v|〉}.

3

	Staging Computation
	Proofs and Programs

