
Types and Programming Languages (15-814),
Fall 2018

Assignment 4: Data Representation

Contact: 15-814 Course Staff

Due Tuesday, October 16, 2018, 10:30am

This assignment is due by 10:30am on the above date and it must be submitted
electronically as a PDF file on Canvas. Please use the attached template to typeset
your assignment and make sure to include your full name and Andrew ID. As
before, problems marked “WB” are subject to the whiteboard policy; all other
problems must be done individually.

We have again provided you the syntax, statics, and dynamics for our simple
language from class. Please ensure that your terms are syntactically correct and
that they have the right type!

General hint. Consider whether the results from a given task can be used to
solve subsequent tasks!

Task 1 (0 points). How long did you spend on this assignment? Please list the
questions that you discussed with classmates using the whiteboard policy.

1 Natural Numbers in Binary Form

Recall the definition of natural numbers in binary representation in the first line
below and the isomorphism satisfied by this type.

bin = ρ(α. (b0 : α) + (b1 : α) + (ε : 1))
bin ∼= (b0 : bin) + (b1 : bin) + (ε : 1)

We also defined the constants and functions bzero, dbl0, and dbl1 encapsulating
the constructors for binary numbers.

bzero : bin = fold (ε · 〈 〉)
dbl0 : bin→ bin = λx. fold (b0 · x)
dbl1 : bin→ bin = λx. fold (b1 · x)

1

https://piazza.com/class/jl9thnft7ibun
https://piazza.com/class/jl9thnft7ibun?cid=8

Also recall the increment function from lecture:

inc : bin→ bin =
fix(i. λx. case (unfoldx)

{ b0 · y ⇒ fold (b1 · y)
| b1 · y ⇒ fold (b0 · (i y))
| ε · ⇒ fold (b1 · (fold (ε · 〈| |〉))) })

In order to simplify the typesetting task and make the code easier to write and
read, we encourage you to use “verbatim” code1 that exploits pattern matching,
recursive definitions of functions by name, and constructor functions with im-
plicit fold and unfold operations. For example, the definitions above might be
written as

bzero = eps ()

dbl0 x = b0 x

dlb1 x = b1 x

inc (b0 y) = b1 y

inc (b1 y) = b0 (inc y)

inc (eps _) = b1 (eps ())

Task 2 (5 points, WB). Define a function plus : bin → bin → bin that adds two
natural numbers in binary form. You may use the functions and constants defined
above.

Task 3 (5 points, WB). Define a function eqbits : bin → bin → bool that returns
true if the two arguments are the exact same sequence of bits and false otherwise.

Task 4 (5 points, WB). Demonstrate that eqbits is not a correct implementation of
equality of natural numbers in binary representation. Summarize what you see
as the source of the issue.

Task 5 (10 points, WB). The problem exhibited in previous task can be addressed
in several ways. Explain at least two approaches of how the problem in the
previous section may be addressed, and provide the details for two different
solutions. Provide definitions and code in each case as appropriate, including
a function eq : bin → bin → bool that correctly implements equality of natural
numbers in binary form.

1Use the verbatim environment.

2

2 Representing Integers

We can represent integers a as pairs 〈x, y〉 of natural numbers x and y in binary
form where a = x− y. We’ll use this as an example of a recursive type that is not
actually recursive.

int = ρα. bin⊗ bin
int ∼= bin⊗ bin

In the tasks below, you should look for opportunities to use the functions defined
in the previous problem on natural numbers in binary form.

Task 6 (5 points, WB). Define a function binToInt : bin→ int that, when given a
representation of a the natural number n, returns an integer representing n.

Task 7 (5 points, WB). Define a constant izero : int representing the integer 0 as
well as functions iplus and iminus of type int→ int→ int representing addition
and subtraction on integers.

Task 8 (5 points, WB). Propose an alternative representation of integers using
sums instead of products and define how mathematical integers are represented.
You do not need to implement any functions on this representation, but please
explain in a few sentences which one you would prefer and why.

3 Reasoning Inductively with Data

The values of so-called purely positive types only contain other values but not
arbitrary expression. They follow this grammar:

Positive types τ+ ::= τ+1 ⊗ τ
+
2 | 1 |

∑
i∈I(i : τ+i) | ρ(α+. τ+) | α+

We can now specialize the typing rules to values of purely positive type, giving us
both an easy way to reason about canonical forms and inductively prove proper-
ties of programs. The rules for the judgment ` v :: τ+ establish simultaneously
that v is a value and that it has type τ+.

` v :: τ+i

` i · v ::
∑

i∈I(i :: τ+i)
(I-+)

` v1 :: τ+1 ` v2 :: τ+2

` 〈v1, v2〉 :: τ+1 ⊗ τ
+
2

(I-⊗)
` 〈 〉 :: 1

(I-1)

` v :: [ρ(α+. τ+)/α+]τ+

` fold v :: ρ(α+. τ+)
(I-ρ)

3

Observe that there are no elimination rules (since they don’t form values), and
that there are no variables or contexts.

Theorem. For any expression v and purely positive type τ+, we have that
` v :: τ+ iff · ` v : τ+ and v val.

Proof. In each direction, by rule induction on the given derivation. From right to
left we also use inversion on v val to conclude that the given rules are the only
applicable ones.

Task 9 (5 points, WB). Give a detailed proof showing that there are no closed
values of type ρ(α+. α+ ⊗ α+) by assuming ` v :: ρ(α+. α+ ⊗ α+) and deriving a
contradiction.

We can further specialize the rules to particular types, such as the type of bin
of bit strings from Problem 1:

bin = ρα. (b0 : α) + (b1 : α) + (ε : 1)
bin ∼= (b0 : bin) + (b1 : bin) + (ε : 1)

`bin fold (ε · 〈| |〉) :: bin

`bin v :: bin

`bin fold (b0 · v) :: bin

`bin v :: bin

`bin fold (b1 · v) :: bin

These rules are complete for closed values of type bin (which we do not prove,
but is straightforward). They are interesting because they give rise to an induction
principle for bit strings which is just a rule induction over this new judgment.

Task 10 (5 points, WB). Prove that for all closed values v of type bin,

inc v 7→∗ w for some value w

We now define a decrement function on numbers in binary representation.

dec : bin→ bin = fix d. λx.
case unfoldx { b0 · y ⇒ b1 · (d y)

| b1 · y ⇒ b0 · y
| ε · u⇒ ε · u }

In surface syntax, using data constructors, pattern matching and recursive defini-
tions:

dec (b0 y) = b1 (dec y)

dec (b1 y) = b0 y

dec (eps _) = eps ()

4

Task 11 (10 points, WB). Attempt to prove that for all closed values v of type bin

dec (inc v) 7→∗ v

by using rule induction on the value typing `bin v :: bin.
This proof will fail in one case. Indicate how this failure might be addressed

in light of Problem 1. You do not need to write new code or carry out a revised
proof.

5

A Syntax

Types τ and terms e are given by the following grammars, where I ranges over
finite index sets:

τ ::= α | τ1 → τ2 | τ1 ⊗ τ2 | 1 |
∑

i∈I(i : τi) |&i∈I(i : τi) | ρ(α. τ)

e ::= x

| λx. e | e1 e2
| i · e | case e {i · xi ⇒ ei}i∈I
| 〈e1, e2〉 | case e0 {〈x1, x2〉 ⇒ e′}
| 〈 〉 | case e0 {〈 〉 ⇒ e′}
| 〈|i ↪→ ei|〉i∈I | e · i
| fold(e) | unfold(e)

| fix(x.e)

As discussed in class, the 0 is a special case of sums with I = ∅.

6

B Statics

For any type constructor %, we use the name (I-%) for a rule that introduces
(constructs) an expression of type % and (E-%) for a rule that eliminates (de-
structs) an expression of type %. Variables and fixed points are special, since they
are not tied to any particular type.

x : τ ∈ Γ

Γ ` x : τ
(VAR)

Γ, x : τ ` e : τ ′

Γ ` λx.e : τ → τ ′
(I-→)

Γ ` e1 : τ → τ ′ Γ ` e2 : τ

Γ ` e1 e2 : τ ′
(E-→)

Γ ` e : τj (j ∈ I)

Γ ` j · e :
∑

i∈I(i : τi)
(I-+)

Γ ` e :
∑

i∈I(i : τi) Γ, xi : τi ` ei : τ (∀i ∈ I)

Γ ` case e {i · xi ⇒ ei}i∈I : τ
(E-+)

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` 〈e1, e2〉 : τ1 ⊗ τ2
(I-⊗)

Γ ` e0 : τ1 ⊗ τ2 Γ, x1 : τ1, x2 : τ2 ` e′ : τ

Γ ` case e0 {〈x1, x2〉 ⇒ e′} : τ
(E-⊗)

Γ ` 〈 〉 : 1
(I-1)

Γ ` e0 : 1 Γ ` e′ : τ
Γ ` case e0 {〈 〉 ⇒ e′} : τ

(E-1)

Γ ` ei : τi (∀i ∈ I)

Γ ` 〈|i ↪→ ei|〉i∈I : &i∈I(i : τi)
(I-&)

Γ ` e : &i∈I(i : τi) (j ∈ I)

Γ ` e · j : τj
(E-&)

Γ ` e : [ρ(α. τ)/α]τ

Γ ` fold(e) : ρ(α. τ)
(I-ρ)

Γ ` e : ρ(α. τ)

Γ ` unfold(e) : [ρ(α. τ)/α]τ
(E-ρ)

Γ, x : τ ` e : τ

Γ ` fix(x.e) : τ
(FIX)

7

C Dynamics

For any type constructor % we write (V-%) for defining a value of type %, (R-%)
for a reduction where a destructor meets a constructor, and (CI-%) and (CE-%)
for the congruence rules for constructors and destructors for the type %.

λx.e val
(V-→)

v2 val

(λx. e1) v2 7→ [v2/x]e1
(R-→)

e1 7→ e′1

e1 e2 7→ e′1 e2
(CE-→1)

v1 val e2 7→ e′2

v1 e2 7→ e1 e
′
2

(CE-→2)

v val
i · v val

(V-+)
e 7→ e′

i · e 7→ i · e′
(CI-+)

e 7→ e′

case e {i · xi ⇒ ei}i∈I 7→ case e′ {i · xi ⇒ ei}i∈I
(CE-+)

vj val

case (j · vj) {i · xi ⇒ ei}i∈I 7→ [vj/xj]ej
(R-+)

v1 val v2 val

〈v1, v2〉 val
(V-⊗)

e1 7→ e′1

〈e1, e2〉 7→ 〈e′1, e2〉
(CI-⊗1)

v1 val e2 7→ e′2

〈v1, e2〉 7→ 〈v1, e′2〉
(CI-⊗2)

e0 7→ e′0

case e0 {〈x1, x2〉 ⇒ e′} 7→ case e′0 {〈x1, x2〉 ⇒ e′}
(CE-⊗)

v1 val v2 val

case 〈v1, v2〉 {〈x1, x2〉 ⇒ e′} 7→ [v1/x1, v2/x2]e
′

(R-⊗)

〈 〉 val
(V-1)

e0 7→ e′0

case e0 {〈 〉 ⇒ e′} 7→ case e′0 {〈 〉 ⇒ e′}
(CE-1)

case 〈 〉 {〈 〉 ⇒ e′} 7→ e′
(R-1)

〈|i ↪→ ei|〉i∈I val
(V-&)

e 7→ e′

e · j 7→ e′ · j
(CI-&)

〈|i ↪→ ei|〉i∈I · j 7→ ej
(R-&)

v val
fold(v) val

(V-ρ)
e 7→ e′

fold(e) 7→ fold(e′)
(CI-ρ)

e 7→ e′

unfold(e) 7→ unfold(e′)
(CE-ρ)

v val
unfold(fold(v)) 7→ v

(R-ρ)

fix(x.e) 7→ [fix(x.e)/x]e
(R-FIX)

8

	Natural Numbers in Binary Form
	Representing Integers
	Reasoning Inductively with Data
	Syntax
	Statics
	Dynamics

