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Abstract. We show how linear typing can be used to obtain functional
programs which modify heap-allocated data structures in place.

We present this both as a “design pattern” for writing C-code in a func-
tional style and as a compilation process from linearly typed first-order
functional programs into malloc()-free C code.

The main technical result is the correctness of this compilation.

The crucial innovation over previous linear typing schemes consists of
the introduction of a resource type <& which controls the number of con-
structor symbols such as cons in recursive definitions and ensures linear
space while restricting expressive power surprisingly little.

While the space efficiency brought about by the new typing scheme and
the compilation into C can also be realised by with state-of-the-art opti-
mising compilers for functional languages such as OCAML [15], the pre-
sent method provides guaranteed bounds on heap space which will be of
use for applications such as languages for embedded systems or ‘proof
carrying code’ [18].

1 Introduction

In-place modification of heap-allocated data structures such as lists, trees, queues
in an imperative language such as C is notoriously cumbersome, error prone, and
difficult to teach.

Suppose that a type of lists has been defined! in ¢ by

typedef enum {NIL, CONS} kind_t;

typedef struct lnode {
kind_t kind;
int hd;
struct lnode * tl;

} list_t;

and that a function

! Usually, one encodes the empty list as a NULL-pointer, whereas here it is encoded as
a list_t with kind component equal to NIL. This is more in line with the encoding
of trees we present below. If desired, we could go for the slightly more economical
encoding, the only price being a loss of genericity.
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list_t reverse(list_t 1)

should be written which reverses its argument “in place” and returns it. Everyone
who has taught C will agree that even when recursion is used this is not an entirely
trivial task. Similarly, consider a function

list_t insert(int a, list_t 1)

which inserts a in the correct position in 1 (assuming that the latter is sorted)
allocating one struct node.
Next, suppose, you want to write a function

list_t sort(list_t 1)

which sorts its argument in place according to the insertion sort algorithm. Note
that you cannot use the previously defined function insert () here as it allocates
new space.

As a final example, assume that we have defined a type of trees

typedef struct tnode {
kind_t kind;
int label;
struct tnode * left;
struct tnode * right;
} tree_t;

(with kind_t extended with LEAF, NODE) and that we want to define a function
list_t breadth(tree_t t)

which constructs the list of labels of tree t in breadth-first order by consuming
the space occupied by the tree and allocating at most one extra struct lnode.
While again, there is no doubt that this can be done, my experience is that all
of the above functions are cumbersome to write, difficult to verify, and likely to
contain bugs.

Now compare this with the ease with which such functions are written in a
functional language such as OcAML [15]. For instance,

let reverse 1 = let rec rev_aux 1 acc =
match 1 with
[1 -> acc
| a::1 -> rev_aux 1 (a::acc)
in rev_aux 1 []

type tree = Leaf of int
| Node of intxtreextree

let rec breadth t = let rec breadth_aux 1 =
match 1 with

1 ->10
| Leaf(a)::t -> a::breadth_aux(t)
| Node(a,l,r)::t -> a::breadth_aux(t @ [1] @ [r])
in breadth_aux [t]
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These definitions are written in a couple of minutes and are readily verified using
induction and equational reasoning.

The difference, of course, is that the functional programs do not modify their
argument in place but rather construct the result anew by allocating fresh heap
space.

If the argument is not needed anymore it will eventually be reclaimed by
garbage collection, but we have no guarantee whether and when this will happen.
Accordingly, the space usage of a functional program will in general be bigger
and less predictable than that of the corresponding C program.

The aim of this paper is to show that by imposing mild extra annotations
one can have the best of both worlds: easy to write code which is amenable to
equational reasoning, yet modifies its arguments in place and does not allocate
heap space unless explicitly told to do so.

We will describe a linearlyﬁ typed functional programming language with
lists, trees, and other heap-allocated data structure which admits a compilation
into malloc ()-free C. This may seem paradoxical at first sight because one should
think that at least a few heap allocations would be necessary to generate initial
data. However, our type system is such that while it does allow for the definition
of functions such as the above examples, it does not allow one to define constant
terms of heap-allocated type other than trivial ones like nil.

If we want to apply these functions to concrete data we either move out-
side the type system or we introduce an extension which allows for controlled
introduction of heap space. However, in order to develop and verify functions as
opposed to concrete computations doing so will largely be unnecessary.

This is made possible in a natural way through the presence of a special
resource type < which in fact is the main innovation of the present system over
earlier linear type systems, see Section [Gl

While experiments with “hand-compiled” examples show that the generated
C-code can compete with the highly optimised Ocamlopt native code compiler
and outperforms the Ocaml run time system by far we believe that the effi-
cient space usage can also be realised by state-of-the-art garbage collection and
caching.

The main difference is that we can prove that the code generated by our
compilation comes with an explicit bound on the heap space used (none at all in
the pure system, a controllable amount in an extension with an explicit allocation
operator). This will make our system useful in situations where space economy
and guaranteed resource bounds are of the essence. Examples are programming
languages for embedded systems (see [12] for a survey) or “proof-carrying code”.

In a nutshell the approach works as follows. The type ¢ (dia_t in the C
examples) gets translated into a pointer type, say void * whose values point to
heap space of appropriate size to store one list or tree node. It is the task of the
type system to maintain the invariant that overwriting such heap space does not
affect the result.

2 We always use “linear” in the sense of “affine linear”, i.e. arguments may be used at
most once.
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When invoking a recursive constructor function such as cons() or node()
one must supply an appropriate number of arguments of type < to provide the
required heap space. Conversely, if in a recursion an argument of list or tree type
is decomposed these O-values become available again.

Linear typing then ensures that overwriting the heap space pointed to by
these O-values is safe.

It is important to realise that the C programs obtained as the target of the
translation do not involve malloc () and therefore must necessarily update their
heap allocated arguments in place. Traditional functional programs may achieve
the same global space usage by clever garbage collection, but there will be no
guarantee that under all circumstances this efficiency will be realised.

We also point out that while the language we present is experimental the
examples we can treat are far from trivial: insertion sort, quick sort, breadth
first traversal using queues, Huffman’s algorithm, and many more. We therefore
are lead to believe that with essentially engineering effort our system could be
turned into a usable programming language for the abovementioned applications.

2 Functional Programming with C

Before presenting the language we show how the translated code will look like
by way of some direct examples.
For the above-defined list type we would make the following definitions:

typedef void * dia_t; and list_t cons(dia t d, int hd, list_t tl){
and list_t res;
list_t nil(){ res.kind = CONS;

list_t res; res.hd = hd;

res.kind=NIL; *(list_t *)d = tl;

return res; res.tl = (list_t *)d;
} return res;

}

followed by
typedef struct { and list_destr_t list.destr(list_t 1) {

kind_t kind; list_destr_t res;
dia_t d; res.kind = 1.kind;
int hd; if (res.kind == CONS) {
list_t t1; res.hd = 1.hd;
} list destr_t; res.d = (void *) 1.tl;
res.tl = *x1.tl;
}
return res;
}

The function nil() simply returns an empty list on the stack. The function
cons() takes a pointer to free heap space (d), an entry (hd) and a list (t1)
and returns on the stack a list with hd-field equal to hd and tl-field pointing
to a heap location containing t1. This latter heap location is of course the one
explicitly provided through the argument d.
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The destructor function 1ist_destr () finally, takes a list (1) and returns a
structure containing a field kind with value CONS iff 1.kind equals CONS and
in this case containing in the remaining fields head and tail of 1, as well as a
pointer to a free heap location capable of storing a list node (d).

Once we have made these definitions we can implement reverse () in a fun-
ctional style as follows:

list_t rev_aux(list_t 10, list_t acc) {
list_destr_t 1 = list_destr(10);
return 1.kind==NIL ? acc
: rev_aux(1l.tl, cons(l.d, 1.hd, acc));
}

list_t reverse(list_t 1) {
return rev_aux(1l,nil());

}

Notice that reverse() updates its argument in place, as no call to malloc() is
being made.

To implement insert() we need an extra argument of type dia_t since this
function, just like cons (), increases the length. So we write:

list_t insert(dia_t d, int a, list_t 10) {
list_destr_t 1 = list_destr(10);
return 1.kind==NIL ? cons(d,a,nil())
:a<=1.hd ? cons(d,a,cons(1.d,1.hd,1.t1))
cons(d,1l.hd,insert(1.d,a,1.tl));
}

Using insert() we can implement insertion sort with in place modification as
follows:

list_t sort(list_t 10) {
list_destr_t 1 = list_destr(10);
return 1.kind==NIL ? nil()
insert(1.d,1.hd,sort(1.tl1));
}

Notice, how the value 1.d which becomes available in decomposing 1 is used to
feed the insert() function.

Finally, let us look at binary int-labelled trees. We define

tree_t leaf(int label) { and tree_t node(dia_t di, dia_t d2,

tree_t res; int label, treet 1, treet r) {
res.kind = LEAF; tree_t res;
res.label = label; res.kind = NODE;
return res; res.label = label;
} *(tree.t *)dl = left;

*(tree_t *)d2 = right;
res.left = (tree_t *)di;
res.right = (tree_t *)d2;
return res;
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followed by

typedef struct { and tree_destr_t tree destr(tree.t t) {
kind_t kind; tree_destr_t res;
int label; res.label = t.label;
dia_t d1, 42; if ((res.kind = t.kind) == NODE) {
tree_t left, right; res.dl = (dia_t)t.left;

} tree destr.t; res.d2 = (dia_t)t.right;

res.left = *(tree_t *)t.left;
res.right = *(tree_t *)t.right;

}

return res;

Notice that we must pay two <s in order to build a tree node. In exchange, two
<Os become available when we decompose a tree.

To implement breadth we have to define a type listtree_t of lists of trees
analogous to list_t with int replaced by tree_t. Of course, the associated
helper functions need to get distinct names such as niltree(), etc.

We can then define a function br_aux with prototype

list_t br_aux(listtree_t 1)

by essentially mimicking the functional definition above (the complete code is omitted
for lack of space) and obtain the desired function breadth as

list_t breadth(dia_t d, tree_t t) {
return br_aux(cons(d,t,nil()));

}

Notice that the type of breadth shows that the result requires one memory region more
than the input.

All these functions do not use dynamic memory allocation because the heap space
needed to store the result can be taken from the argument. To construct concrete lists
in the first place we need of course dynamic memory allocation. The full paper shows
how this can be accommodated in a controlled fashion. Of course, for these programs
to be correct it is crucial that we do not overwrite heap space which is still in use. The
main message of this paper is that this can be guaranteed systematically by adhering
to a linear typing discipline.

In other words, a function must use its argument at most once.

For instance, the following code which attempts to double the size of its argument
would be incorrect:

list_t twice(list_t 10) {
list_destr_t 1 = list_destr(10);

return 1.kind==NIL ? nil()
cons(1.d,0, (cons(1.d,0,twice(1.t1))));
}

Rather than returning a list of 0’s twice the size of its input it returns a circular list!
A similar effect happens, if we replace the last line of the code for insert () by

cons(d,1l.hd,insert(d,a,1.t1));

In each case the reason is the double usage of the ¢-values d and 1.4d.
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3 A Linear Functional Programming Language

We will now introduce a linearly typed functional metalanguage and translate it sy-
stematically into C. This will be done with the following aims. First, it allows us to
formally prove the correctness of the methodology sketched above, second it will relieve
us from having to rewrite similar code many times. Suppose, for instance, you wanted
to use lists of trees (as needed to implement breadth first search). Then all the basic
list code (1ist_t, nil(), comns(), etc. ) will have to be rewritten (this problem could
presumably also be overcome through the use of C++ templates [13]). Thirdly, a for-
malised language with linear type system will allow us to enforce the usage restrictions
on which the correctness of the above code relies. Finally, this will open up the possi-
bility to extend the metalanguage to a fully-fledged functional language which would
be partly compiled into C whenever this is possible and executed in the traditional
functional way when this is not the case.

3.1 Syntax and Typing Rules
The zero-order types are given by the following grammar.
A:=N|O|LA) | TA) | A1 ® Az

More type formers such as sum types, records, and variants can easily be added.

A first-order type is an expression of the form T' = (A1, ..., A,)—B where A; ... A,
and B are zero-order types.

A signature X is a partial function from identifiers (thought of as function symbols)
to first-order types.

A typing context I is a finite function from identifiers (thought of as parameters)
to zero order types; if z ¢ dom(I") then we write I',z:A for the extension of I" with
x — A. More generally, if dom(I") N dom(A) = @ then we write I, A for the disjoint
union of I" and A. If such notation appears in the premise of a rule below it is implicitly
understood that these disjointness conditions are met.

Types not including L(—), T(—), < are called heap-free, e.g. N and N ® N are heap-
free.

Let ¥ be a signature. The typing judgement I' Fx e : A read “expression e has
type A in typing context I" and signature X” is defined by the following rules.

z € dom(I") (Var)
B —— AR
'ty x:I'(x)
2(f)=(As,...,An)—B Iikbsei:Aifori=1...n (s16)
I
Fl,...,l"nl—gf(eh...,en):B
I'z:AjyAbxse: B A heap-free

(CONTR)

I'z:Abselz/y]: B

c a C integer constant
(ConsT)

I'kFse:N
I'Fser:N AkFses: N % a Cinfix opn.

(INFIX)

At eixez: N
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I'kFse:N AFse: A AFse’: A
I''Absifethene elsee’: A

I'kFxse: A AFxe B
INArse®e :AQ B
I'rFxe: A®B Ax:AyBrFse:C
I', A Fx match e with z @ y=¢' : C
I'Fxnila: L(A) (NIL)
I'ikFseq: < IkFsen: A IibFs e i L(A)
Fd,Fh,Ft }—2 cons(ed,eh,et) : L(A)
I'kxe:L(A)
Absem: B
A, d: O h: A EL(A) B s econs - B
I' A 5 match e with nil=-enii|cons(d, h, t)=-€cons : B

F"EEIA

(PAIR)

(SpLIT)

(Cons)

(LisT-ELIM)

LEAF
I' x5 leaf(e) : T(A) ( )
Fd1|—2€d1:<> Fdzl—zedzio Fal—zjeaZA
I+ :T(A IbFxe :T(A
Lz e T(A) ¥ (4) (NODE)

Tat, Tz, T, I, T F 5 node(eat, €a2, €a, €1, €r) : T(A)
I'kFxe:T(A) Aja:Abx eess 1 B
A, d12<>7 d22<>, CLIA, lT(A), TT(A) |_Z‘ €node : B
I' A 5 match e with leaf(a)=-¢jear|node(d1, d2, a, I, 7)=>€node : B
(TREE-ELIM)

Remarks The symbol x in rule INFIX ranges over a set of binary infix operations such
as +, - ,/ , *, <=, ==, ... We may include more such operations and also other
base types such as floating point numbers or characters.

As usual, we omit type annotations wherever possible. The constructs involving
match bind variables.

Application of function symbols or operations to their operands is linear in the
sense that several operands must in general not share common free variables. This is
because of the implicit side condition on juxtaposition of contexts mentioned above. In
view of rule CONTR, however, variables of a heap-free type may be shared and moreover
the same free variable may appear in different branches of a case distinction as follows
e.g. from the form of rule IF. Here is how we typecheck = + x when z:N. First, we have
z:NF 2z :Nand y:N F y : N by VAR. Then z:N,y:N - 24y : N by INFIX and finally
z:N F z+z : N by rule CONTR. It follows by standard type-theoretic techniques that
typechecking for this system is decidable in linear time.

Programs A program consists of a signature X and for each symbol
f : (Al, ce. ,An)—>B
contained in X a term

x1: AL, ..., ZntAn b ef : B
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3.2 Set-Theoretic Interpretation

In order to specify the purely functional meaning of programs we introduce a set-
theoretic interpretation as follows: types are interpreted as sets by

IN[=2Z

[¢] = {0}

[L(A)] = finite lists over [A]
[T(A)] = binary [A]-labelled trees
[A® B] = [A] x [B]

To each program (X, (ef)fedom(x)) We can now associate a mapping p such that
p(f) is a partial function from [A:1] x ...[A,] to [B] for each f: (A1,...,An)—B.

This meaning is given in the standard fashion as the least fixpoint of an appropriate
compositionally defined operator:

A waluation of a context I' is a function n such that n(z) € [I'(z)] for each = €
dom(I"); a valuation of a signature X is a function p such that p(f) € [X(f)] whenever
f € dom(X). It is valid if it interprets the constructors and destructors for lists and
trees by the eponymous set-theoretic operations

To each expression e such that I" Fx e : A we assign an element [e], € [AJU{Ll}
in the obvious way, i.e. function symbols and variables are interpreted according to the
valuations; basic functions and expression formers are interpreted by the eponymous
set-theoretic operations, ignoring the arguments of type < in the case of construc-
tor functions. The formal definition of [— ﬂ . by induction on terms. A program
(X, (ef) fedom(x)) is interpreted as the least valuation p such that

p(f)(vlv .. '71]") = [[ef]]p,n

where n(z;) = v;.

We stress that this set-theoretic semantics does not say anything about space usage.
Its only purpose is to pin down the functional denotations of programs so that we can
formally state what it means to implement a function. Accordingly, the resource type
is interpreted as a singleton set and ® product is interpreted as cartesian product.

It will be our task to show that the malloc()-free interpretation of our language is
faithful with respect to the set-theoretic semantics. Once this is done, the user of the
language can think entirely in terms of the semantics as far as extensional verification
and development of programs is concerned. In addition, he or she can benefit from the
resource bounds obtained from the interpretation but need not worry about how these
are guaranteed.

3.3 Examples

Reverse:

rev_aux : (L(N),L(N))—L(N)
reverse : (L(N))—L(N)
€rev.aux(l, acc) = match [ with
nil=acc
|cons(d, h, t)=rev_aux(t, cons(d, h, acc))
€reverse(l) = rev_aux(l, nily)
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Insertion sort

insert : (O, N, L(N))—L(N)
sort : (L(N))—L(N)
€insert (d, a, 1) = match [ with
nil=-nil
|cons(d’, b,)=if a < b
then cons(d, a, cons(d’, b,1))
else cons(d, b, insert(d’,b,1))
€sort (l) = match [ with
nil=nil
|cons(d, a,l)=insert(d, a, sort(l))

Breadth-first search

snoc : (O, L(T(N)), T(N))—L(T(N))
breadth : (L(T(N)))—L(N)
€snoc(d, 1, t) = match [ with
nil=-cons(d, ¢, nil())
|cons(d’,t', g)=-cons(d’, ', snoc(d, q,t))
ebreadth(q) = match q with
nil=nil
|cons(d, ¢, ¢) = match t with
leaf(a)=>cons(d, a, breadth(q))
node(d1, dz, a,l, r)=-cons(d, a,
breadth(snoc(dz, snoc(di, q,1),7)))

Other examples we have tried out include quicksort, treesort, and the Huffman algo-
rithm.

Remark 31 [t can be shown that all definable functions are non-size-increasing, e.g.,
if f: (L(N))—=L(N) then, semantically, |f(1)| < |l|. This would not be the case if we
would omit the <& argument in cons, even if we keep linearity. We would then, for
example, have the function f(I) = cons(0,1) which increases the length. The presence
of such a function in the body of a recursive definition gives rise to arbitrarily long
lists.

3.4 Compilation into C

By following the pattern of the examples in the introduction it is possible to associate
a piece of C-code [P]° to each program P = (X, (ef) fedom(s)) in such a way that

1. To each zero-order type A occurring in P a unique C identifier v(A) is associated
and [[Pﬂc contains an appropriate type definition of this identifier along with appro-
priately typed helper functions, e.g. v(A)_cons, v(A)_list_destr when A =L(...).

2. For each function symbol f : (A1, ..., An,)—B defined in P the code [P]° contains
a corresponding definition [f]° of a function f with prototype
v(B) fw(AL) z1, ..., v(An) zn)

3. Whenever I' -5 e : A then we can exhibit a C expression [e]° of type v(A) and
involving the identifiers in I" and in X.

The details of this translation are omitted for lack of space; its gist is, however, con-
tained in the examples from the introduction.
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3.5 Correctness of the Translation

We now have to show that the translation [P]° of a program P computes the partial
functions defined by the set-theoretic interpretation p of P. Since we have not given
all details of the translation we must content ourselves with a sketch of the correctness
theorem and its proof which should hopefully allow the inclined reader to reconstruct
it in full.

For each zero-order type A we define the set V(A) as the set of pairs (v, H) where
v is a C-stack-value of type v(A) (under the type definitions [P]°) and H is a region
in the heap (a set of addresses).

For example, an element of V(L(N)) consists of a stack-value of

typedef struct lnode {
kind_t kind;int hd;struct lnode * t1l;
} list_t;

i.e., a triple v = (k, h,t) where k, h are (4 byte) integers and ¢ is a memory address
together with a set H of memory addresses. This set of memory addresses is meant to,
but at this point not required to, comprise all addresses reachable from ¢ by iterated
dereferencing.

Next, we inductively define a relation -4 C V(A) x [A] which singles out the values
which “implement” or “correspond to” a given semantic value.

— (n,0) by n', if n encodes n’

— (p,H) ko 0, if H is a contiguous region of size max{sizeof (v(A)) | A occurs in P}

and p points to the beginning of H.

(v,H) IFagp (a,b) if H=H; U Hs and v.fst, Hy IF4 a and v.snd, Hs IFp b.

(v,0) IFLcay nil if v.kind = NIL.

(v, H) IF(4) cons(h,t), if v.kind = CONS and H = Hq U H, U H; and (v.tl, Hy)

IFo 0 and (v.hd, Ht) IFa h and (v.t1, Hy) Ik a) t,

— (v, H) IFr(ay leaf(a) if v.kind = LEAF and (v.label, H) IF4 a,

- (’U,H) |FT(A) node(a,l,r) if v.kind = NODE and H = Hdl U Hd2 U Ha U Hl U H,,»
and (v.left, Hq1) IFo 0 and (v.right, Haz) IFo 0 and (v.label, Hy) IFa a and
(v.left, Hy) IFr(ay l and (v.right, H;) lbreay v

Here H = H; U Hy means that H = H, U Hy and H; N Hy = (.
Notice that whenever A is heap-free and (v, H) IFa a for some a then H = ().

Theorem 32 Assume the following:

— a program P = (X, (ef) fedom(x)),

a well typed expression I'+x e: A,

— for each x € I' a value (vg, Hy) € V(I'(x)) such that Hy N Hy = () whenever x # vy,
— a mapping n such that (vz, Hz) Ik ey n(x) for each x € dom(I”),

Let p be the set-theoretic interpretation of P.

Then the evaluation of [[e]]?mHszanzn] in a runtime environment which maps
z € dom(I") to v will result in a value v such that (v, H) Ita [e], , for some subset
H C Uzedom(f‘) H, and moreover the part of the heap outside of Uzedom(f‘) Hy will be

left unaffected by the evaluation.

Proof. Straightforward lexicographic induction on evaluation time and length of typing
derivations. Details are omitted for lack of space.

It follows by specialising to the defining expressions ey that a program computes its
set-theoretic interpretation.
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4 Extensions

Dynamic allocation As it stands there is no way to create a value of type <, so in
particular, it is not possible to create a non-nil constant of list type. The examples show
that this is often not needed. Sometimes, however, dynamic allocation and deallocation
may be required and to this end we can introduce functions new : ()—< and disp :
(©)—N. The full paper explains how these are translated and used.

Polymorphism, higher-order functions We can extend the language with polymor-
phism (with two kinds of type variables ranging over zero- and first order types) and
higher-order functions, both linear and nonlinear. Recursive functions would then be
defined using a single constant

rec : VX.I(IX — X) —o X

where X ranges over first-order types. The full paper contains a more detailed discus-
sion of this point.

Queues The program for breadth-first search could be made more efficient using queues
with constant time enqueuing. We can easily add a type former Q(A) (and appropriate
term formers) which gets translated into linked lists with a pointer to their end. The
correctness proof carries over with only minor changes.

Tail recursion The type system does not impose any restriction on the size of the
stack. If a bounded stack size is desired, all we need to do is restrict to a tail recursive
fragment and translate the latter into iteration.

More challenging would be some automatic program transformation which transla-
tes the existing definition of breadth and similar functions into iterative code. To what
extent this can be done systematically remains to be seen. It seems that at least for
linear recursion (only one recursive call) such transformation might always be possible
using continuations.

Ezxpressivity In order to study complexity-theoretic expressivity it seems to be a rea-
sonable abstraction to view the type N as finite, e.g. the set of 32 bit words, and to
view the heap as infinite. In this case, we have the following expressivity result:

Theorem 41 If f : N — N is a non-increasing function computable in linear (in
log(n)) space then there exists a program containing a symbol £ : (L(N))—L(N) such
that [£](u(z)) = u(f(z)) when u : N — {0,1}* is an encoding of natural numbers as
lists of 0s and 1s.

Proof. If f(n) is computable in space clog(n) then we use the type T = L(N® ... ®
N) with ¢ factors to store memory configurations. We obtain f by iterating a one-
step function of type (T')—T and composing with an initialisation function of type
(L(N))—T and an output extraction function of type (7)—L(N) all of which are readily
seen to be implementable in our system.

If we restrict to a tail recursive fragment then programs can also be evaluated in linear
space so that we obtain a characterisation of linear space.
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Recursive types We can extend the type system and the compilation technique to
arbitrary (even nested) first-order recursive types. To that end, we introduce (zero
order) type variables and a new type former uX.A which binds X in A. Elements of
1X.A would be introduced and eliminated using fold and unfold constructs

I'kFre: A[(C @ uX.A)/X]
I'tx fold(e) : uX.A

(FoLD)

I'Fse:puX.A
I' Fx unfold(e) : A[(C ®@ uX.A)/X]

. This together with coproduct and unit types allows us to define lists and trees as
recursive datatypes. Notice that this encoding would also charge two s for a tree
constructor.

(UNFOLD)

5 Conclusion

We have defined a linearly typed first-order language which gives the user explicit
control over heap space in the form of a resource type.

A translation of this system into malloc ()-free C is given which in the case of simple
examples such as list reversal and quicksort generates the usual textbook solutions with
in-place update.

We have shown the correctness of this compilation with respect to a standard set-
theoretic semantics which disregards linearity and the resource type and demonstrated
the applicability by a range of small examples.

The main selling points of the approach are

1. that it achieves in place update of heap allocated data structures while retaining
the possibility of equational reasoning and induction for the verification and

2. that it generates code which is guaranteed to run in a heap of statically determined
size.

This latter point should make the system interesting for applications where resources
are limited, e.g. computation over the Internet, proof-carrying code, and embedded
systems. Of course further work, in particular an integration with a fully-fledged fun-
ctional language and the possibility of allocating a fixed amount of extra heap space
will be required. Notice, however, that this latter effect can already be simulated by
using input of the form L(O ® A) as opposed to L(A).

Also, a type inference system relieving the user from having to explicitly move
around the <-resource might be helpful although the present system has the advan-
tage of showing the user in an abstract and understandable way where space is being
consumed. And perhaps some programmers might even enjoy spending and receiving
Os.

6 Related Work

While the idea of translating linearly typed functional code directly into C seems to be
new there exist a number of related approaches aimed at controlling the space usage
of functional programs.



178 M. Hofmann

Tofte-Talpin’s region calculus [19] tries to minimise garbage collection by dividing
the heap into a list of regions which are allocated and deallocated according to a stack
discipline. A type systems ensures that the deallocation of a region does not destroy
data which is still needed; an inference system [20] generates the required annotations
automatically for raw ML code.

The difference to the present work is not so much the inference mechanism (see
above) but the fact that even with regions the required heap size is potentially un-
bounded whereas the present system guarantees that the heap will not grow. Also in
place update does not take place.

Hughes and Pareto’s system of sized types annotates list types with their length,
e.g. the reversal function would get type Vn.L,(A) — L,(A). While this system allows
one to estimate the required heap and stack size it does not perform in place update
either (and cannot due to the absence of linear types).

In a similar vein Crary and Weirich [7] have given a type system which allows one to
formalise and certify informal reasoning about time consumption of recursive programs
involving lists and trees. Their language is a standard one and no optimisation due to
heap space reuse is taken into account.

The relationship between linear types and garbage collection has been recognised
as early as ’87 by Lafont [14], see also [10,1,21,16]. But again, due to the absence of
O-types, these systems do not provide in place update but merely deallocate a linear
argument immediately after its use.

This effect, however, is already achieved by traditional reference counting which
may be the reason why linear functional programming hasn’t really got off the ground,
see also [6]. While the runtime advantages of the present approach might also be realised
through reference counting (and indeed seem to be by the OCAMLOPT compiler) the
distinctive novelty lies in the fact that one can guarantee bounded heap size and obtain
a simple C program realising it which can be run on any machine or system supporting
C.

The type system itself is very similar to the system described by the author in [9]
which in turn was inspired by Caseiro’s analysis of recursive equations [5] and bears
some remote similarity with Bounded Linear Logic [8]

Mention should also be made of Baker’s Linear LISP [2,3] which bears some si-
milarity to our language. It does not contain the resource type < or a comparable
feature, thus it is not clear how the size of intermediate data structures is limited, cf.
Remark [31] Similar ideas, without explicit mention of linearity are also contained in
Myecroft’s thesis [17]

Other related approaches are uniqueness types in Clean [4], linear ADTs and mo-
nads [11] which will be compared in the full paper.

In a seminar talk in Edinburgh, John Reynolds has reported about ongoing work
on using linear types for in-place update. At the time of writing there was no conclusive
result, though and his attention seems to have since shifted to using linear types for
reasoning about shared heap allocated data structures. This together with a medium
depth literature research leads me to believe that the present article is in fact the first
to successfully apply linear types to the problem of functional in-place update.

Acknowledgement 1 would like to thank Samson Abramsky for helpful comments and
encouragements. Thanks are also due to Peter Selinger for spotting a shortcoming in
an earlier version of this paper.
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