The Occurrence of Continuation Parameters

in CPS Terms

Olivier Danvy Frank Pfenning
February 1995
CMU-CS-95-121

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

We prove an occurrence property about formal parameters of continuations in Continuation-Passing
Style (CPS) terms that have been automatically produced by CPS transformation of pure, call-by-
value A-terms. Essentially, parameters of continuations obey a stack-like discipline.

This property was introduced, but not formally proven, in an earlier work on the Direct-Style
transformation (the inverse of the CPS transformation). The proof has been implemented in EIf,
a constraint logic programming language based on the logical framework LF. In fact, it was the
implementation that inspired the proof. Thus this note also presents a case study of machine-
assisted proof discovery.

All the programs are available in

ftp.daimi.aau.dk:pub/danvy/Programs/danvy-pfenning-E1f93.tar.gz
ftp.cs.cmu.edu:user/fp/papers/cpsocc9s.tar.gz

Most of the research reported here was carried out while the first author visited Carnegie Mellon University in the
Spring of 1993. Current address: Olivier Danvy, Ny Munkegade, Computer Science Department, Aarhus University,
DK-8000 Aarhus C, Denmark; danvy@daimi.aau.dk

This work was supported by NSF Grant CCR-93-03383 and by the DART project (Design, Analysis and Reasoning
about Tools) of the Danish Research Councils.



Keywords: Lambda-Calculus, Continuation-Passing Style, Logical Frameworks



Contents

1 Introduction 2
2 The CPS Transformation 3
3 CPS Terms 5
3.1 BNF of CPSterms . . . . . . . oo o e 5
3.2 Occurrences of continuation parameters . . . . .. . ... ... ... ... 5
3.3 Occurrences of formal parameters of continuations . . . . .. ... ... ... .... 5
4 The Proof 7
5 Implementation in EIf 9
5.1 Direct-style terms . . . . . . . .. oL L 10
5.2 CPSterms. . . . . o L o e 10
5.3 The CPS transformation . . . . . . . . ... . L 11
5.4 Ordering over parameters of continuations . . . . . . . ... ... ... ... 12
5.5 The proof . . . . . o 12
5.6 Anexample . . . . oL oL 14
6 The Direct-Style Transformation 16
7 Related Work 18
8 Conclusion and Issues 18
A Occurrences of Continuations Parameters 18

List of Figures

=1 O Tt =W N =

The left-to-right, call-by-value CPS transformation formulated as a function . . . . . 4
The left-to-right, call-by-value CPS transformation formulated as a judgment . ... 4
Occurrences of continuation parameters in a CPSterm . . . . . .. ... ... .. .. 6
Ordering over formal parameters of continuations in a CPS term . . . . . ... ... 6

The call-by-value DS transformation formulated as a function and using substitutions 16
The call-by-value DS transformation formulated as a function and using a stack . . . 17

The call-by-value DS transformation formulated as a judgment and using a stack . . 17



1 Introduction

Continuation-Passing Style (CPS) A-terms encode both evaluation order and sequencing order [13].

For example, consider the Direct Style (DS) A-term
Ae.fa(gx).
Evaluating it from left to right under call-by-value (CBV) amounts
1. to evaluate fx — call the result vy,
2. to evaluate g #+ — call the result vy, and
3. to apply vy to vy — call the result vs.
CBV, left-to-right CPS transformation of this term yields
Ak (A Mk, fx Avy.g & Avg.vg vg Avs.kvs).
On the other hand, evaluating the DS A-term above from right to left under CBV amounts
1. to evaluate g — call the result v,
2. to evaluate fx — call the result vy, and

3. to apply v1 to vo — call the result vs.

CBV, right-to-left CPS transformation of this A term yields
Ak (A Ak.gx Avg. f & Avy.vg vz Avs.kvs).

In earlier work, the first author developed a textual inverse of the CPS transformation, i.e.,
a “direct-style transformation” [2]. To this end, it was necessary to characterize CPS terms that
correspond to the output of Plotkin’s CPS transformation, after administrative reductions [3, 16].
However this characterization was not formally proven. The goal of this note is to prove it.

The proof has been implemented in EIf [10], a constraint logic programming language based
on the logical framework LF [5]. In fact, it was the implementation that inspired the proof.
LF turned out to be particularly suited for this problem, since two-level A-terms and the CPS
transformation can be encoded very naturally by using meta-level abstraction and application to
model administrative reductions. This note thus also presents an excellent, albeit small, case study
of machine-assisted proof discovery.

The rest of this note is organized as follows. Section 2 presents our starting point: the left-to-
right CBV CPS transformation. We formulate it both as a function and as a judgment. Section
3 describes properties of CPS terms as produced by this CPS transformation: their BNF and the
ordering of formal parameters of continuations. In Section 4, we prove that the output of the CPS
transformation satisfies the ordering. Section 5 describes the implementation of the proof in Elf.

Following a comparison with related work in Section 7, Section 8 concludes.



2 The CPS Transformation

The BNF of the pure A-calculus reads as follows. We refer to this A-calculus as direct style (DS) to

distinguish it from the continuation-passing style (CPS) calculus introduced later.

r € DRoot — DS terms ru=e

e € DExp — DS expressions en=epey |t
t € DTriv — DS trivial expressions tu=a | Aaor
x € Ide — identifiers

Figure 1 displays a one-pass CPS transformer for the pure call-by-value A-calculus. This transformer
is an optimized version of Plotkin’s CPS transformer [13], derived in an earlier work [3]; it is slightly
rephrased to match the syntactic domains.

These equations can be read as a two-level specification @ la Nielson and Nielson [8]. Opera-

tionally,

e for any variable z and any expressions e, eg, and ey, [z]e and eg(ey) respectively correspond to
functional abstractions and applications in the translation program (and define the so-called

“administrative reductions”), and

e for any variable # and any expressions e, eg, and ey, Az.e and egeq respectively represent

abstract-syntax constructors (to build the residual program).

Note that the types of the translations and continuations are meta-level types: The object calculus
is untyped. We revisit these types in Section 5.2.
The CPS transformation can be reformulated with three judgments. A DS term r is transformed

into a CPS term r’ whenever the judgment

DRoot
B it Gy

is satisfied. Given a continuation k, a DS expression e is transformed into a CPS expression €’
whenever the judgment

DEx
Fe;k s P

is satisfied. Finally, a DS trivial expression ¢ is transformed into a CPS trivial expression ¢’ whenever
the judgment

DTriv
—

Ft t

is satisfied. The overall transformation is displayed in Figure 2.

NB: In the inference rule for applications, tg is “new”, i.e., the deduction of the left premise
is parametric in to. This means that we can substitute an arbitrary trivial term ¢ for ¢y in this
derivation and obtain a derivation of F ey ; [t1] ¢t Av.k(v) DExp € (t). This property is exploited

crucially in the proof of Section 4.



¢PRoot + DRoot — CRoot
CPReote] = Me.CPEXP[e] ([t]kt)

CPExP . DExp — [CTriv — CExp] — CExp
COBPlegen] i = CVPPLeo] ([to]CPPlea] ([to 1y Av.ri(v)))
CDEXP[[t]] P I{(CDTHV[[t]])

cPTive . DTriv - CThriv
C]?Triv [[$]] - 2
¢ D Triv [Ae.r] = /\w.CDROOt[[r]]

where k and the v’s are fresh variables.

Figure 1: The left-to-right, call-by-value CPS transformation formulated as a function

Fe; [t]kt%pe’

DRoot
Fe —2" \k.e!

DExp DExp

Fers []tot dok(v) =X el(to)  Foeos [to] € (t) —F ¢ g Yy
I—eoel;m%pe’ I—t;m%pm(t’)
L DRogt
b Y F Az Y Ap

Figure 2: The left-to-right, call-by-value CPS transformation formulated as a judgment




3 CPS Terms

We first specify the BNF of CPS terms as produced by the CPS transformation of Figures 1 and 2,
and then we specify the occurrence conditions over the continuations and their formal parameters.

Both specifications come from the earlier work on the DS transformation [2].

3.1 BNF of CPS terms

The BNF of CPS terms reads as follows. (NB: We distinguish between the original identifiers
coming from the DS term, and the fresh identifiers v and k introduced by C.)

r € CRoot — CPS terms rua= Ak.e

e € CExp — CPS (serious) expressions en=toty Av.e | kt
t € CTriv — CPS trivial expressions tu=a | der | v
x € lde — source identifiers

v € Var — fresh parameters of continuations

k € Cont — fresh variables denoting continuations

3.2 Occurrences of continuation parameters

The occurrence conditions over continuation parameters is simple: there is only one continuation
at any point of a CPS term. This is captured in Figure 3 and proven in Appendix A.

CPS terms that do not satisfy the occurrence conditions over continuation parameters corre-
spond to DS terms that use a control operator such as call/cc. This point is investigated elsewhere

[4, 6].

3.3 Occurrences of formal parameters of continuations

The occurrence conditions over the formal parameters of continuations are reproduced in Figure 4.
This figure should be read as follows. Given a CPS expression e occurring in the scope of formal

parameters of continuations listed in the order of their declaration in a list &, the judgment
CE
g l_Varxp €
is satisfied whenever the variables listed in £ and all the other formal parameters of continuations
declared in e occur in a left-to-right fashion in e. (NB: e denotes the empty list.)

Similarly, given a trivial term ¢ occurring in the scope of formal parameters of continuations

listed in the order of declaration in £, the judgment
Ehvar b €
is satisfied whenever ¢’ is a prefix of ¢ and the remaining variables of & occur in ¢ in a left-to-right
fashion.
Our goal here is to prove that transforming a DS term r with C (in Figures 1 and 2) yields a

CPS term that satisfies the judgment
e e



k‘ l_CEXp

Cont €
CRoot
Feomlt Ak.e
CTrlv CTrlv CEXP CTrlv
- - s -
Cont Cont Cont Cont
kkggﬁ’mtlAve kkggﬁ’kt
CRoot
l_Cont
_CTriv .. CTriv _CTriv ,,
l_Cont z l_Cont Az.r l_Cont v

Figure 3: Occurrences of continuation parameters in a CPS term

CExp
l_Var

F%ﬁ”tAkf

. . CE .
ERGIY g &G 45 & Cos Uiyt € ERGIV L @
CE CE
f l_varXp to tl AU.@ f l_varXp
ngoot
ERGIY o ¢ EROINY Xar s € Eobgnvy . ¢

Figure 4: Ordering over formal parameters of continuations in a CPS term




NB: There is nothing wrong with CPS terms that do not satisfy the judgments of Figure 4.
Simply, they specify another evaluation order or another sequencing order than the one captured
in the CPS transformation of Figures 1 and 2. Therefore, they cannot be mapped back to direct
style naively [2, 7].

4 The Proof

Globally, we are interested in proving that if - r PROOE 17 then I—gi""t r’. Clearly, we cannot

prove this inductively by itself since properties at the root of a term are defined in terms of the
expressions it contains. The critical issue is the property of continuations we must prove (in the
inductive conclusion) and require (in the inductive hypothesis) for the translation of expressions
under a continuation. A continuation is a (meta-level) function from trivial terms to expressions,
which suggests the method of logical relations [17]. The idea behind binary logical relations is to
consider two functions related if they map related arguments to related results. In unary form: A
function is valid if it maps valid arguments to valid results. This kind of definition is pervasive
in the application of logical frameworks to meta-theoretic reasoning (e.g., [9]). It works smoothly
here.

Four notions of validity arise: for root terms, for trivial expressions, for serious expressions, and
for continuations. In their definitions, we must account for the context £ in which an expression
might occur. For root terms, serious expressions, and trivial expressions, the notion of validity
is derived directly from the property we are trying to prove; for continuations it arises from the
considerations of logical relations as motivated above. We also streamline the definitions by con-
sidering separately the case of a trivial variable v, since such a variable is never the result of the

translation of a trivial DS term (see Theorem 1 (3)).

Definition 1
(1) ' is valid if F{Root o/
(2) € is &valid if & I—SEFXP
(3) 1 is valid if € I 45 € for every €.
(4) & is &valid if
(a) & v I—SaErXp x(v), and

(b) € '_S/Erxp K(t'), for any valid t'.

This definition is more complex than it may appear at first, since it involves meta-level appli-

cations x(v) and s(t') and therefore, implicitly, substitution.

Theorem 1

(1) Ifkr

DR t . R
8! then v is valid.



(2) If k is &E-valid and - e 5 K DEXP o then ¢ is &-valid.

(3) If bt — IV 4 then ¢ is valid,
DROOt I DEXP I
Proof: By mutual induction on the derivations R, £, and 7 of b r r'Fe; k — €, and
DTrlv ’

it t', respectively.

&

DEXp ¢!
Case R = Ce ][ngft
Fe —" Ak.e

Then k = [t] kt is e-valid:

CTrlv .
i Ul_(\j%l; holds and
oy, P k

(a)

'_CTI‘IV /.
for any valid .

Y

Hence, by induction hypothesis (2) on &, e I—SEFXP , and thus F{Reot NE.e!.

&1 (to) &
evs [tots dos(v) 2F el(ty)  Feos [to] € (to) ZF ¢

Feger; K DExp o1
Assume £ is £-valid. We need to show that kg = [to] €] (to) is &-valid, since then & I—SEFXP e by

induction hypothesis (2) on &. Thus we need to show properties (a) and (b) for xq.

51 (Uo)
(a) We need &, vg I—SEFXP Ko(vg). Consider ey ; [t1] vty Av.k(v) DExp €l (vo). We would like
to show that

Case & =

K1 = [t1] vots Av.k(v)

is &, vo-valid, since then €| (vg) = ko(vo) is &, vo-valid by induction hypothesis (2) on
&1(vg). Therefore we need to consider the two cases of Definition 1(4).

(a) &, vo, v1 Fuio® iy (vy). We derive this as follows:

since x is &-valid
CExp
57 v l_Var (U)

€, vg, vy FYIEY vy 1 € & v FYLY vg 5 €

CExp
£, vg, U1 I—var vo V1 Av.K (V)

(b) &, vo Fy™ k(t)), where ¢} is valid. This is established by the derivation

since ¢} is valid since k is -valid
i CE
& vo Fg/z?lflv tll ;& vo £, vo |_CTr1v . € § v '_Varxp H(U)
) Var ’

&, vg, 1 I—VEXP v t] Av.k(v)

Thus rq is &, vg-valid. Therefore, by induction hypothesis on & (vg),

€, vo L™ ko (vo).



(b) We need & FUP 0 (th) for any valid ). Consider

& (tp)
Feq s [t]th 6 Av.k(v) Dﬁf ey (ty)
N——
= ko(ty)

We would like to show that
K1 = [t1]tot Av.k(v)

is &-valid, so we can apply the induction hypothesis to & (). Again, we need to consider
the two clauses of Definition 1(4).

(a) & vy b Var P K1(v1). We derive this as follows:

since t{ is valid since k is &-valid
i CE
g l_g/g;}“lv t6 ; g 57 l_Varxp H(U)

57 U1 l_glg;}“lv 15 g

€, v PSP 1L vy Av.k(v)
(b) € FSEXP ki (#) for any valid #;. We construct:

since ¢ is valid since t{ is valid since x is &-valid
CE
EFVar 15 € € Va1 € & vbvar K(v)
CE
v Dot Av.k(v)

Hence &y is &-valid and thus & I—SEFXP e} (ty) by induction hypothesis (2) on & (tf).
N —
= rio (o)
Thus kg is &-valid. Hence €’ is valid by induction hypothesis (2) on &.
T

DTrlv

Case & = Et — DEXp

ik (t’)
By induction hypothesis (3) on 7, t’ is valid. Since we assume that & is {-valid, k(t') is also
&-valid by clause (b) in Definition 1.

Case T = —————. Then CTriv is an axiom for any &.

Fz DE}V g l_Var T g
R by i.h. (1) on R
T -y DR_O(})t o L '_gRoot
Case = . Then we construct Ty .
F oz 25 Ap g EHhvar ¥ v’ €

5 Implementation in EIf

In this section we show the implementations of the DS and CPS terms, CPS transformation,
ordering, and the proof that the results of the CPS transformation are valid. Familiarity with the
LF logical framework [5], its methodology, and it implementation in EIf [10] is assumed. Some

implementation-specific details will be mentioned in the commentary.



5.1 Direct-style terms

Recall the information definition of direct-style (DS) terms in BNF form.

DS (Root) Terms rou= e
DS (Serious) Expressions e = eger |t
DS Trivial Expressions t = x| Axor

We only remark that the representation uses higher-order abstract syntaz [11] to represent object-
level abstractions, and that the natural inclusions (e.g., every trivial expression is an expression)

are modeled by explicit coercions (e.g., dtriv_dexp).

droot : type. %name droot R
dexp : type. %name dexp E
dtriv : type. %name dtriv T

dexp_droot : dexp —> droot.

dapp : dexp —-> dexp —-> dexp.
dtriv_dexp : dtriv -> dexp.
dlam : (dtriv -> droot) -> dtriv.

Note that dlam abstracts over an argument of type dtriv, thus encoding the fact that variables
x are trivial expressions. The %name declarations indicate preferred variable names for syntactic
classes, in case the EIf interpreter has to synthesize names (which is a frequent occurrence in during

type reconstruction).

5.2 CPS terms

Recall the definition of continuation-passing style (CPS) terms in BNF form.

CPS (Root) Terms r o= MAk.e
CPS (Serious) Expressions e = egepdve | kt
CPS Trivial Expressions t = x| e | v

CPS terms are modelled using the same principles as DS terms, but they introduce a new con-
sideration. The two-level CPS transformation from Section 2 shows that a continuation is best
considered as a meta-level function which, when applied to a trival term, yields an expression. It
therefore has type ctriv -> cexp. An abstraction over a continuation (as is necessary for a root
term Ak.e) thus is a third-order construct! This is rare and indicates that we are exploiting the
expressive power of the meta-language to a great extent.

croot : type. %name croot R

cexp : type. %name cexp E

ctriv : type. Y%name ctriv T
% ccont : type = ctriv -> cexp. %name ccont K

rlam : ((ctriv -> cexp) -> cexp) —-> croot.
capp : ctriv -> ctriv -> (ctriv -> cexp) -> cexp.
clam : (ctriv -> croot) —> ctriv.

Note that Elf currently does not support definitions, so we must write the expanded version of

the continuation type ccont by hand. It is inserted in the source only as a comment.

10



5.3 The CPS transformation

The judgments in Figure 2 can be easily transcribed into EIf. Just like the inference rules them-
selves, the corresponding declarations below should be understood schematically—the free variables
are implicitly quantified. Elf’s type reconstruction determines the most general type for the free
variables in each declaration.

Instead of d : A => (B => C) we often use the form d : C <= B <- A to emphasize the op-
erational interpretation of the declarations as a logic program (to solve C first solve B then A). In
this case, the logic program transforms DS terms to CPS terms. The ¥mode pragmas establish
the role of input (+) and output (=) arguments to a predicate. They are checked for consistency,
thus providing operational correctness guarantees beyond type correctness. The ¥lex annotation
postulates a termination ordering on the given arguments and modes which is checked by EIf. In

this case we simply use the subterm ordering on the first argument of the three mutually recursive

judgments.
cst_r : droot -> croot -> type. %name cst_r CR
cst_e : dexp -> (ctriv -> cexp) -> cexp -> type. Y%name cst_e CE
cst_t : dtriv -> ctriv —> type. %name cst_t CT

%mode -cst_r +R -R’
%mode -cst_e +E +K -E’
Y%mode -cst_t +T -T’
%lex {R E T}

cst_r_dexp : cst_r (dexp_droot E) (rlam E’)
<- ({k:ctriv -> cexp} cst_e E k (E’ k)).

cst_e_dapp :
cst_e (dapp EO E1) K E’
<- ({tO:ctriv} cst_e E1 ([tl:ctriv] capp t0 t1 K) (E1’ t0))
<- cst_e EO ([tO:ctriv] E1’ t0) E’.

cst_e_dtriv : cst_e (dtriv_dexp T) K (K T?)
<-cst_t TT’.

cst_t_dlam : cst_t (dlam R) (clam R’)
<- ({x:dtriv} {x’:ctriv} cst_t x x> -> cst_r (R x) (R’ x’)).

The left premise of the rule for applications ege; is required to be parametric in tg. This is

represented by a dependently typed function from ¢y to a derivation of

Foey s [ti]tots Av.k(v) DExp el (to).

In Elf’s concrete syntax this type is written as
{tO0:ctriv} cst_e E1 ([tl:ctriv] capp t0 t1 K) (E1’ t0)

Note that we have silently n-reduced Av.k(v) and simply written K. This is a matter of style and

efficiency, but not essential, since the definitional equality of the EIf meta-language is fn-conversion.

11



5.4 Ordering over parameters of continuations

In order to describe the ordering over parameters of continuations, we require a notion of stack
which is easily defined. The %infix declaration makes ¢,” a left-associative infix operator with an

(arbitrary) binding strength of 10.

stack : type. %name stack Xi
dot : stack.
s : stack -> ctriv —-> stack. %infix left 10 ,

The three mutually recursive judgments regarding variable ordering are easily translated into
Elf. Note that the cases concerning variables @, v and k& must be given wherever such variables
are introduced, rather than globally. This is a consequence of the representation technique of

higher-order abstract syntax.

ord_r : croot —> type. %name ord_r OR
ord_e : stack -> cexp —-> type. %name ord_e OE
ord_t : stack -> ctriv -> stack -> type. Yname ord_t OT

%mode -ord_r +R

%mode -ord_e +Xi +E

%mode -ord_t +Xi’ 4T -Xi’’
%lex {R E T}

ord_r_rlam : ord_r (rlam E)
<= ({k:ctriv -> cexp}
({Xi:stack} {T:ctriv}
ord_e Xi (k T) <- ord_t Xi T dot)
-> ord_e dot (E k)).

ord_e_capp : ord_e Xi (capp TO T1 E)
<- ord_t Xi T1 Xii
<- ord_t Xi1l TO XiO
<= ({v:ctriv}
({Xi’:stack} ord_t (Xi’ , v) v Xi’)
-> ord_e (Xi0 , v) (E v)).

ord_t_clam : ({Xi:stack} ord_t Xi (clam R) Xi)
<- ({x:ctriv}
({Xi’:stack} ord_t Xi’ x Xi’)
-> ord_r (R x)).

5.5 The proof

The informal proof in Section 4 that continuation parameters obey a stack-like discipline can be
translated into EIf using the technique of higher-level judgments (see, for example, [12]). Our
(constructive) proof may be seen as containing an algorithm for computing a derivation R’ of
I—gi""t r' from a derivation R of F r "2 1/ In Elf, this algorithm is implemented as a logic
program for transforming R into R’; declaratively it is a higher-level judgment relating derivations
R and R'. Properties of these higher-level judgments such as termination can then be established

automatically.

12



In order to match the definition of the CPS transformation closely, our formalization does not

use explicit definitions of validity except for continuations x, which would otherwise be unwieldy.
valid_k : stack -> (ctriv -> cexp) -> type.

Y%mode -valid_k +Xi +K
%lex K

vld_k : valid_k Xi K
<= ({v:ctriv}
({Xi’:stack} ord_t (Xi’ , v) v Xi’)
-> ord_e (Xi , v) (K v))
<- ({t’:ctriv}
({Xi:stack} ord_t Xi t’ Xi)
-> ord_e Xi (K t’)).

The proof is implemented by three mutually recursive higher-level judgments for root terms,
expressions, and trivial expressions. FEach clause corresponds to one case of the informal proof.

Each appeal to an induction hypothesis appears as a recursive call.

proof_r : cst_r R R’ -> ord_r R’ -> type.
proof_e : cst_e E K E’ -> valid_k Xi K -> ord_e Xi E’ —> type.
proof_t : cst_t T T’ -> ({Xi:stack} ord_t Xi T’ Xi) -> type.

%mode -proof_r +CR -OR
%mode -proof_e +CE +VK -OE
%mode -proof_t +CT -0T
%“lex {CR CE CT}

pf_r : proof_r (cst_r_dexp CE) (ord_r_rlam OE)
<= ({k:ctriv -> cexp}
{ok : {Xi:stack} {T:ctriv} ord_e Xi (k T) <- ord_t Xi T dot}
proof_e (CE k)
(vld_k
([t’:ctriv] [CT:{Xi:stack} ord_t Xi t’ Xi]
ok dot t’ (CT dot))
([v:ctriv] [CT:{Xi’:stack} ord_t (Xi’ , v) v Xi’]
ok (dot , v) v (CT dot)))
(OE k ok)).

pf_e_dapp : proof_e (cst_e_dapp CEO CE1) (vld_k _ OE) OE’
<- ({v0 : ctriv} {0TO : {Xi’:stack} ord_t (Xi’ , vO) vO Xi’}
proof_e (CE1 vO0)
(vld_k
([t1:ctriv] [0T1:{Xi’:stack} ord_t Xi’ t1 Xi’]
ord_e_capp OE (0TO Xi) (OT1 (Xi , v0)))
([vil:ctriv] [0OT1:{Xi’:stack} ord_t (Xi’ , v1) vi1 Xi’]
ord_e_capp OE (0TO Xi) (OT1 (Xi , v0))))
(VEL’V vO 0T0))
<- ({t0 : ctriv} {0TO : {Xi’:stack} ord_t Xi’ t0 Xi’}
proof_e (CE1 t0)
(vld_k
([t1:ctriv] [0T1:{Xi’:stack} ord_t Xi’ t1 Xi’]

13



ord_e_capp OE (0TO Xi) (OT1 Xi))
([vil:ctriv] [0OT1:{Xi’:stack} ord_t (Xi’ , v1) vi1 Xi’]
ord_e_capp OE (0TO Xi) (OT1 Xi)))
(VEL’T 0 0T0))
<- proof_e CEO (vld_k VE1’T VE1’V) OE’.

pf_e_dtriv : proof_e (cst_e_dtriv CT) (vld_k OE _) (OE T’ OT)
<- proof_t CT OT.

pf_t_dlam : proof_t (cst_t_dlam CR) (ord_t_clam OR)
<- ({x:dtriv} {x’:ctriv}
{CT: cst_t x x’}
{0T:{Xi’:stack} ord_t Xi’ x’ Xi’}
proof_t CT OT
-> proof_r (CR x x’ CT) (OR x’ OT)).

From the implementation above it is actually quite easy (with a little experience) to reconstruct
the informal proof.
The proof of the property of occurrences of continuations & themselves (see Figure 3) can also

easily be represented in the same style. It can be found in Appendix A.

5.6 An example

We now reconsider the direct-style term from Section 1.

Ax.fa(gx)

Under appropriate declarations for f and g as variables, this term is represented in EIf by

(dexp_droot
(dtriv_dexp
(dlam [x:dtriv]
dexp_droot (dapp (dapp (dtriv_dexp f) (dtriv_dexp x))
(dapp (dtriv_dexp g) (dtriv_dexp x))))))
: droot.

It is rather lengthy due to the coercions, but we could easily write a judgment to insert appropriate

coercions into pure A-term. In order to translate this we may pose the following query.

CR:
cst_r (dexp_droot
(dtriv_dexp
(dlam [x:dtriv]
dexp_droot (dapp (dapp (dtriv_dexp f) (dtriv_dexp x))

(dapp (dtriv_dexp g) (dtriv_dexp x))))))
R.

which yields the CPS term R (eliding the derivation CR)

R =
rlam [k:ctriv -> cexp]
k (clam [x’:ctriv] rlam [kl:ctriv -> cexp]
capp £’ x’ ([tOl:ctriv] capp g’ x’ ([tl:ctriv] capp t01 t1 k1))),
CR =

14



Modulo variable names, this corresponds to
Ak (A Mk, fx Avy.g & Avg.vg vg Avs.kvs).

The omitted term CR represents the derivation of the judgment

FXe.fa(gx) DRoot \ .k (Ax.Ak. f 2z Avy.gx Ava.vg vg Avs.k vs)

which was constructed by the EIf interpreter in answer to the first query. We can apply the
implementation of the meta-theory to translate CR into a derivation showing that the conditions on

occurrences of continuation parameters are satisfied in this example, that is, into a derivation of

FORoOt Nk ke (A2 Mk f 2 Avy.g & Avg.vy v Avs.k vs).

r

The query is the following. The first argument to proof_r is the derivation CR elided above.

proof_r
(cst_r_dexp [k:ctriv -> cexpl
cst_e_dtriv
(cst_t_dlam [x:dtriv] [x’1:ctriv] [CT:cst_t x x’1]
cst_r_dexp [kil:ctriv -> cexp]
cst_e_dapp
(cst_e_dapp (cst_e_dtriv cst_f) ([tO:ctriv] cst_e_dtriv CT))
([t0:ctriv]
cst_e_dapp (cst_e_dtriv cst_g) ([tO0l:ctriv] cst_e_dtriv CT))))
OR.

We know that a query of this form will always succeed. In this case it produces the substitution

OR =
ord_r_rlam [k:ctriv -> cexp]
[ok:{Xi:stack} {T:ctriv} ord_t Xi T dot -> ord_e Xi (k T)]
ok dot
(clam [x’:ctriv] rlam [kl:ctriv -> cexp]
capp £’ x’ ([tO:ctriv] capp g’ x’ ([tl:ctriv] capp t0 t1 k1)))
(ord_t_clam
([x’1:ctriv] [OT:{Xi’:stack} ord_t Xi’ x’1 Xi’]
ord_r_rlam [kil:ctriv -> cexpl]
[ok1:{Xi:stack} {T:ctriv} ord_t Xi T dot -> ord_e Xi (k1 T)]
ord_e_capp
([vO:ctriv] [0TO1:{Xi’:stack} ord_t (Xi’ , v0) v0 Xi’]
ord_e_capp
([vil:ctriv] [0OT1:{Xi’:stack} ord_t (Xi’ , v1) vi1 Xi’]
ord_e_capp
([v:ctriv]
[CT:{Xi’:stack} ord_t (Xi’ , v) v Xi’]
okl (dot , v) v (CT dot))
(0TO01 dot) (0OT1 (dot , v0)))
(ord_t_g (dot , v0)) (OT (dot , v0)))
(ord_t_f dot) (0T dot))
dot) .

which shows that the CPS term above satisfies the ordering criterion.

15



pCReot . CRoot — DRoot
DCROOt[[/\k.e]] — DCEXP[[e]]

pUEXP . (CExp — DExp
DCExp [[tO t /\v.e]] — DCExp [[6]] [U — DCTriv [[to]] DCTriv [[tl]] ]
DCExp [[k t]] — DCTriv [[t]]
pChiv . CTriv — DExp
DCTriv [[$]] - 2
DOV Az ] = Aa.DEReotr]

DCTriv [[U]] —

Figure 5: The call-by-value DS transformation formulated as a function and using substitutions

6 The Direct-Style Transformation

Having formalized and proven the occurrences of continuation parameters in CPS terms, we can
now show the transformation from a CPS term back to direct style. Note that this transformation
only applies to terms satisfying occurrence and ordering conditions.

The following implementation uses substitution (see Figure 5). An implementation that uses a

stack & without explicitly relying on substitution is also possible (see Figures 6 and 7).

dst_r : croot —> droot -> type.
dst_e : cexp -> dexp -> type.
dst_t : ctriv -> dexp -> type.

%mode -dst_r +R -R’
%mode -dst_e +E -E’
%mode -dst_t +T -T’
%lex {R E T}

dst_r_rlam : dst_r (rlam E) (dexp_droot E’)
<= ({k:ctriv -> cexp}
({T:ctriv} {E:dexp} dst_e (k T) E <- dst_t T E)
-> dst_e (E k) E’).

dst_e_capp : dst_e (capp TO T1 ([v:ctriv] E v)) E’
<- dst_t TO EO
<- dst_t T1 E1l
<= ({v:ctriv} dst_t v (dapp EO E1) -> dst_e (E v) E’).

dst_t_clam : dst_t (clam R) (dtriv_dexp (dlam R’))
<- ({x:ctriv} {x’:dtriv}
dst_t x (dtriv_dexp x’)
-> dst_r (R x) (R’ x°)).

16



pCRoot . CRoot — DRoot
DCROOt[[/\k.e]] = DCEXP[[e]]o

plExP . (CExp — List(DExp) — DExp
DCEXP[[to ty Av.e]§ = let{e]; &) = pCTriv [t1] ¢
in let (eh; &) = DETY[te] &
in DOEPLe] (Lo, ef €))
DCEXp[[k t]] g — et <€/; .> — DCTriv[[t]] g
in €
POy CTriv — List(DExp) — (DExp x List(DExp))
DCTriV[[$]] g — <$7 €>
DOV ] € (A DRI €)
DL (&) = (¢ 6)

where “let 2 = e in b” abbreviates “([x]b)(e)” and thus denotes an administrative reduction.

Figure 6: The call-by-value DS transformation formulated as a function and using a stack

CEx
ok ¥ ¢

E e CRoot ¢!

CE
Eht Ve G Gt T el b Lo,ehei e —F ¢ Ert S e
CE CE
EF oty Ave =3 ¢ ERkt =X ¢
o CBogt
ko g R e C Np; ¢ € ko e g

Figure 7: The call-by-value DS transformation formulated as a judgment and using a stack

17




7 Related Work

The structure of CPS terms has been little investigated. Most authors (e.g., Wand and Oliva [18])
implicitly rely on conformant CPS terms to run them on a stack machine.

In their work on reasoning about CPS programs, Sabry and Felleisen also rely on the unicity of
continuations parameters in the pure A-calculus [14, 15].

In their work on separating stages in the CPS transformation [7], Lawall and Danvy noticed that
the sequencing order encoded in CPS terms is accounted for by the occurrences of parameters of
continuations. In his work on the DS transformation [2], Danvy characterized the ordering of Figure
4, but did not prove it formally. During spring 1993, Danvy and Pfenning carried out the work
reported here. Later, in her PhD work on the inverseness of the CPS and the DS transformations,

Lawall independently proved by hand a similar ordering [6, Appendix A.1.1].

8 Conclusion and Issues

We have formalized and proven the occurrences of continuation parameters and of formal param-
eters of continuations in CPS terms. This new knowledge about continuations parameters in CPS
terms can enable their more efficient implementation. For example, the transformation of conform-
ing CPS terms back to direct style can be implemented using a stack to carry out substitutions
(see Figures 6 and 7). This new formulation also makes it simpler to prove that the CPS and the
DS transformations are inverses of each other [6] and to automate this proof.

The implementation in Elf is small but non-trivial. It captures the computational content of the
translations and the meta-theoretic reasoning in a declarative, yet executable way. The framework
is built around the notions of substitution and and meta-level function, which leads to a very elegant
and direct encoding. This representation is unusual in that it requires third-order constants (since it
abstracts over continuations), thus exemplifying a new technique for representing deductive systems
in LF interesting in its own right. Since the encoding suggested the proof technique, this paper
demonstrates, on a small scale, the value of a logical framework as a conceptual tool in the study

of the theory of programming languages.

A Occurrences of Continuations Parameters

Here we present the implementation of the occurrence condition on continuations parameters in CPS

terms resulting from a CPS transformation (see Figure 3). Again, we use a third-order judgment.

occ_r: croot —-> type. %name occ_r KR
occ_e: ((ctriv —-> cexp) —-> cexp) —-> type. %name occ_e KE
occ_t: ctriv -> type. %name occ_t KT

%mode -occ_r +R
Y%mode -occ_e +E
Y%mode -occ_t +T
%lex {R E T}

18



occ_r_rlam: occ_r (rlam E)
<- occ_e E.

occ_e_capp: occ_e ([k:ctriv -> cexp] capp TO T1 ([v:ctriv] (E k v)))
<- occ_t TO
<- occ_t T1
<- ({v:ctriv}
occ_t v
-> occ_e ([k:ctriv -> cexp] (E k v))).

occ_e_cret: occ_e ([k:ctriv -> cexp] k T)
<- occ_t T.

occ_t_clam: occ_t (clam R)
<- ({x:ctriv}
occ_t x

-> occ_r (R x)).

Ymode -occ_k +K
%lex K

occ_k: ((ctriv -> cexp) -> (ctriv -> cexp)) -> type. ‘“name occ_k KK

occ_k_k : occ_k K
<- ({t:ctriv}
occ_t t
-> occ_e ([k:ctriv -> cexp]l K k t)).

Next is the implementation of the proof that the CPS transformation of DS terms yields CPS

terms that satisfy the occurrence conditions of continuations parameters.

kproof_r : ¢cst_r R R’ -> occ_r R’ —> type.

kproof_e : ({k:ctriv -> cexp} cst_e E (K k) (E’ k))
-> occ_k K -> occ_e E’ —> type.

kproof_t : ¢cst_t T T’ -> occ_t T’ —> type.

%mode -kproof_r +CR -KR
%mode -kproof_e +CE +KK -KE
%mode -kproof_t +CT -KT
%“lex {CR CE CT}

kproof_r_dexp : kproof_r (cst_r_dexp CE) (occ_r_rlam KE)
<- kproof_e CE (occ_k_k [t:ctriv] [KT:occ_t t] occ_e_cret KT)
KE.

kproof_e_dapp : kproof_e ([k:ctriv -> cexp] cst_e_dapp (CEO k) (CE1 k))

(occ_k_k KE’) KE
<- ({t0:ctriv} {KTO:occ_t t0}

kproof_e ([k] CE1 k t0)

(occ_k_k [til:ctriv] [KTi:occ_t t1]

occ_e_capp KE’ KT1 KTO)

(KE1 t0 KTO0))

<- kproof_e CEO (occ_k_k KE1) KE.

19



kproof_e_dtriv : kproof_e ([k:ctriv -> cexp] cst_e_dtriv CT) (occ_k_k KE’)
(KE’ T’ KT)
<- kproof_t CT KT.

kproof_t_dlam : kproof_t (cst_t_dlam CR) (occ_t_clam KR)
<- ({x:dtriv} {x’:ctriv}
{Cx: cst_t x x°} {Kx’:occ_t x’}
kproof_t Cx Kx’ -> kproof_r (CR x x’ Cx) (KR x’ Kx’)).

References

[1]

[2]
[3]

[4]

[5]

[10]

[11]

[12]

William Clinger, editor. Proceedings of the 1992 ACM Conference on Lisp and Functional
Programming, LISP Pointers, Vol. V, No. 1, San Francisco, California, June 1992. ACM Press.

Olivier Danvy. Back to direct style. Science of Computer Programming, 22(3):183-195, 1994.

Olivier Danvy and Andrzej Filinski. Representing control, a study of the CPS transformation.
Mathematical Structures in Computer Science, 2(4):361-391, December 1992.

Olivier Danvy and Julia L. Lawall. Back to direct style I1: First-class continuations. In Clinger
[1], pages 299-310.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Journal
of the ACM, 40(1):143-184, 1993. A preliminary version appeared in the proceedings of the
First IEEE Symposium on Logic in Computer Science, pages 194-204, June 1987.

Julia L. Lawall. Continuation Introduction and Elimination in Higher-Order Programming
Languages. PhD thesis, Computer Science Department, Indiana University, Bloomington,

Indiana, USA, July 1994.

Julia L. Lawall and Olivier Danvy. Separating stages in the continuation-passing style trans-
formation. In Susan L. Graham, editor, Proceedings of the Twentieth Annual ACM Symposium
on Principles of Programming Languages, pages 124-136, Charleston, South Carolina, January
1993. ACM Press.

Flemming Nielson and Hanne Riis Nielson. Two-Level Functional Languages, volume 34 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1992.

Frank Pfenning. A proof of the Church-Rosser theorem and its representation in a logical
framework. Journal of Automated Reasoning. To appear. A preliminary version is available as
Carnegie Mellon Technical Report CMU-CS-92-186, September 1992.

Frank Pfenning. Logic programming in the LF logical framework. In Gérard Huet and Gordon
Plotkin, editors, Logical Frameworks, pages 149-181. Cambridge University Press, 1991.

Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Mayer D. Schwartz,
editor, Proceedings of the ACM SIGPLAN’88 Conference on Programming Languages Design
and Implementation, SIGPLAN Notices, Vol. 23, No 7, pages 199-208, Atlanta, Georgia, June
1988. ACM Press.

Frank Pfenning and Ekkehard Rohwedder. Implementing the meta-theory of deductive sys-
tems. In D. Kapur, editor, Proceedings of the 11th International Conference on Automated
Deduction, pages 537-551, Saratoga Springs, New York, June 1992. Springer-Verlag LNAT 607.

20



[13] Gordon D. Plotkin. Call-by-name, call-by-value and the A-calculus. Theoretical Computer
Science, 1:125-159, 1975.

[14] Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing style.
In Clinger [1], pages 288-298.

[15] Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing style.
LISP and Symbolic Computation, 6(3/4):289-360, December 1993.

[16] Guy L. Steele Jr. Rabbit: A compiler for Scheme. Technical Report AI-TR-474, Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts,
May 1978.

[17] W. W. Tait. Intensional interpretation of functionals of finite type 1. Journal of Symbolic
Logic, 32:198-212, 1967.

[18] Mitchell Wand and Dino Oliva. Proving the correctness of storage representations. In Clinger
[1], pages 151-160.

21



