
The Occurrence of Continuation Parametersin CPS TermsOlivier Danvy Frank PfenningFebruary 1995CMU-CS-95-121School of Computer ScienceCarnegie Mellon UniversityPittsburgh, PA 15213AbstractWe prove an occurrence property about formal parameters of continuations in Continuation-PassingStyle (CPS) terms that have been automatically produced by CPS transformation of pure, call-by-value �-terms. Essentially, parameters of continuations obey a stack-like discipline.This property was introduced, but not formally proven, in an earlier work on the Direct-Styletransformation (the inverse of the CPS transformation). The proof has been implemented in Elf,a constraint logic programming language based on the logical framework LF. In fact, it was theimplementation that inspired the proof. Thus this note also presents a case study of machine-assisted proof discovery.All the programs are available in(ftp.daimi.aau.dk:pub/danvy/Programs/danvy-pfenning-Elf93.tar.gzftp.cs.cmu.edu:user/fp/papers/cpsocc95.tar.gzMost of the research reported here was carried out while the �rst author visited Carnegie Mellon University in theSpring of 1993. Current address: Olivier Danvy, Ny Munkegade, Computer Science Department, Aarhus University,DK-8000 Aarhus C, Denmark; danvy@daimi.aau.dkThis work was supported by NSF Grant CCR-93-03383 and by the DART project (Design, Analysis and Reasoningabout Tools) of the Danish Research Councils.

Keywords: Lambda-Calculus, Continuation-Passing Style, Logical Frameworks

Contents1 Introduction 22 The CPS Transformation 33 CPS Terms 53.1 BNF of CPS terms : 53.2 Occurrences of continuation parameters : 53.3 Occurrences of formal parameters of continuations : : : : : : : : : : : : : : : : : : : 54 The Proof 75 Implementation in Elf 95.1 Direct-style terms : 105.2 CPS terms : 105.3 The CPS transformation : 115.4 Ordering over parameters of continuations : 125.5 The proof : 125.6 An example : 146 The Direct-Style Transformation 167 Related Work 188 Conclusion and Issues 18A Occurrences of Continuations Parameters 18List of Figures1 The left-to-right, call-by-value CPS transformation formulated as a function : : : : : 42 The left-to-right, call-by-value CPS transformation formulated as a judgment : : : : 43 Occurrences of continuation parameters in a CPS term : : : : : : : : : : : : : : : : : 64 Ordering over formal parameters of continuations in a CPS term : : : : : : : : : : : 65 The call-by-value DS transformation formulated as a function and using substitutions 166 The call-by-value DS transformation formulated as a function and using a stack : : : 177 The call-by-value DS transformation formulated as a judgment and using a stack : : 17
1

1 IntroductionContinuation-Passing Style (CPS) �-terms encode both evaluation order and sequencing order [13].For example, consider the Direct Style (DS) �-term�x:f x (g x):Evaluating it from left to right under call-by-value (CBV) amounts1. to evaluate f x | call the result v1,2. to evaluate g x | call the result v2, and3. to apply v1 to v2 | call the result v3.CBV, left-to-right CPS transformation of this term yields�k:k (�x:�k:f x �v1:g x�v2:v1 v2 �v3:k v3):On the other hand, evaluating the DS �-term above from right to left under CBV amounts1. to evaluate g x | call the result v2,2. to evaluate f x | call the result v1, and3. to apply v1 to v2 | call the result v3.CBV, right-to-left CPS transformation of this � term yields�k:k (�x:�k:gx �v2:f x�v1:v1 v2 �v3:k v3):In earlier work, the �rst author developed a textual inverse of the CPS transformation, i.e.,a \direct-style transformation" [2]. To this end, it was necessary to characterize CPS terms thatcorrespond to the output of Plotkin's CPS transformation, after administrative reductions [3, 16].However this characterization was not formally proven. The goal of this note is to prove it.The proof has been implemented in Elf [10], a constraint logic programming language basedon the logical framework LF [5]. In fact, it was the implementation that inspired the proof.LF turned out to be particularly suited for this problem, since two-level �-terms and the CPStransformation can be encoded very naturally by using meta-level abstraction and application tomodel administrative reductions. This note thus also presents an excellent, albeit small, case studyof machine-assisted proof discovery.The rest of this note is organized as follows. Section 2 presents our starting point: the left-to-right CBV CPS transformation. We formulate it both as a function and as a judgment. Section3 describes properties of CPS terms as produced by this CPS transformation: their BNF and theordering of formal parameters of continuations. In Section 4, we prove that the output of the CPStransformation satis�es the ordering. Section 5 describes the implementation of the proof in Elf.Following a comparison with related work in Section 7, Section 8 concludes.2

2 The CPS TransformationThe BNF of the pure �-calculus reads as follows. We refer to this �-calculus as direct style (DS) todistinguish it from the continuation-passing style (CPS) calculus introduced later.r 2 DRoot | DS terms r ::= ee 2 DExp | DS expressions e ::= e0 e1 j tt 2 DTriv | DS trivial expressions t ::= x j �x:rx 2 Ide | identi�ersFigure 1 displays a one-pass CPS transformer for the pure call-by-value �-calculus. This transformeris an optimized version of Plotkin's CPS transformer [13], derived in an earlier work [3]; it is slightlyrephrased to match the syntactic domains.These equations can be read as a two-level speci�cation �a la Nielson and Nielson [8]. Opera-tionally,� for any variable x and any expressions e, e0, and e1, [x]e and e0(e1) respectively correspond tofunctional abstractions and applications in the translation program (and de�ne the so-called\administrative reductions"), and� for any variable x and any expressions e, e0, and e1, �x:e and e0 e1 respectively representabstract-syntax constructors (to build the residual program).Note that the types of the translations and continuations are meta-level types: The object calculusis untyped. We revisit these types in Section 5.2.The CPS transformation can be reformulated with three judgments. A DS term r is transformedinto a CPS term r0 whenever the judgment` r DRoot�! r0is satis�ed. Given a continuation �, a DS expression e is transformed into a CPS expression e0whenever the judgment ` e ; � DExp�! e0is satis�ed. Finally, a DS trivial expression t is transformed into a CPS trivial expression t0 wheneverthe judgment ` t DTriv�! t0is satis�ed. The overall transformation is displayed in Figure 2.NB: In the inference rule for applications, t0 is \new", i.e., the deduction of the left premiseis parametric in t0. This means that we can substitute an arbitrary trivial term t for t0 in thisderivation and obtain a derivation of ` e1 ; [t1] t t1 �v:�(v) DExp�! e01(t). This property is exploitedcrucially in the proof of Section 4. 3

CDRoot : DRoot ! CRootCDRoot[[e]] = �k:CDExp[[e]] ([t]k t)CDExp : DExp ! [CTriv ! CExp] ! CExpCDExp[[e0 e1]] � = CDExp[[e0]] ([t0]CDExp[[e1]] ([t1]t0 t1 �v:�(v)))CDExp[[t]] � = �(CDTriv[[t]])CDTriv : DTriv ! CTrivCDTriv[[x]] = xCDTriv[[�x:r]] = �x:CDRoot[[r]]where k and the v's are fresh variables.Figure 1: The left-to-right, call-by-value CPS transformation formulated as a function
` e ; [t] k t DExp�! e0` e DRoot�! �k:e0` e1 ; [t1] t0 t1 �v:�(v) DExp�! e01(t0) ` e0 ; [t0] e01(t0) DExp�! e0` e0 e1 ; � DExp�! e0 ` t DTriv�! t0` t ; � DExp�! �(t0)` x DTriv�! x ` r DRoot�! r0` �x:r DTriv�! �x:r0Figure 2: The left-to-right, call-by-value CPS transformation formulated as a judgment4

3 CPS TermsWe �rst specify the BNF of CPS terms as produced by the CPS transformation of Figures 1 and 2,and then we specify the occurrence conditions over the continuations and their formal parameters.Both speci�cations come from the earlier work on the DS transformation [2].3.1 BNF of CPS termsThe BNF of CPS terms reads as follows. (NB: We distinguish between the original identi�ers xcoming from the DS term, and the fresh identi�ers v and k introduced by C.)r 2 CRoot | CPS terms r ::= �k:ee 2 CExp | CPS (serious) expressions e ::= t0 t1 �v:e j k tt 2 CTriv | CPS trivial expressions t ::= x j �x:r j vx 2 Ide | source identi�ersv 2 Var | fresh parameters of continuationsk 2 Cont | fresh variables denoting continuations3.2 Occurrences of continuation parametersThe occurrence conditions over continuation parameters is simple: there is only one continuationat any point of a CPS term. This is captured in Figure 3 and proven in Appendix A.CPS terms that do not satisfy the occurrence conditions over continuation parameters corre-spond to DS terms that use a control operator such as call/cc. This point is investigated elsewhere[4, 6].3.3 Occurrences of formal parameters of continuationsThe occurrence conditions over the formal parameters of continuations are reproduced in Figure 4.This �gure should be read as follows. Given a CPS expression e occurring in the scope of formalparameters of continuations listed in the order of their declaration in a list �, the judgment� `CExpVar eis satis�ed whenever the variables listed in � and all the other formal parameters of continuationsdeclared in e occur in a left-to-right fashion in e. (NB: � denotes the empty list.)Similarly, given a trivial term t occurring in the scope of formal parameters of continuationslisted in the order of declaration in �, the judgment� `CTrivVar t ; �0is satis�ed whenever �0 is a pre�x of � and the remaining variables of �0 occur in t in a left-to-rightfashion.Our goal here is to prove that transforming a DS term r with C (in Figures 1 and 2) yields aCPS term that satis�es the judgment `CRootVar C[[r]]:5

k `CExpCont e`CRootCont �k:e`CTrivCont t1 `CTrivCont t0 k `CExpCont ek `CExpCont t0 t1 �v:e `CTrivCont tk `CExpCont k t`CTrivCont x `CRootCont r`CTrivCont �x:r `CTrivCont vFigure 3: Occurrences of continuation parameters in a CPS term
� `CExpVar e`CRootVar �k:e� `CTrivVar t1 ; �1 �1 `CTrivVar t0 ; �0 �0; v `CExpVar e� `CExpVar t0 t1 �v:e � `CTrivVar t ; �� `CExpVar k t� `CTrivVar x ; � `CRootVar r� `CTrivVar �x:r ; � �; v `CTrivVar v ; �Figure 4: Ordering over formal parameters of continuations in a CPS term6

NB: There is nothing wrong with CPS terms that do not satisfy the judgments of Figure 4.Simply, they specify another evaluation order or another sequencing order than the one capturedin the CPS transformation of Figures 1 and 2. Therefore, they cannot be mapped back to directstyle na��vely [2, 7].4 The ProofGlobally, we are interested in proving that if ` r DRoot�! r0 then `CRootVar r0. Clearly, we cannotprove this inductively by itself since properties at the root of a term are de�ned in terms of theexpressions it contains. The critical issue is the property of continuations we must prove (in theinductive conclusion) and require (in the inductive hypothesis) for the translation of expressionsunder a continuation. A continuation is a (meta-level) function from trivial terms to expressions,which suggests the method of logical relations [17]. The idea behind binary logical relations is toconsider two functions related if they map related arguments to related results. In unary form: Afunction is valid if it maps valid arguments to valid results. This kind of de�nition is pervasivein the application of logical frameworks to meta-theoretic reasoning (e.g., [9]). It works smoothlyhere.Four notions of validity arise: for root terms, for trivial expressions, for serious expressions, andfor continuations. In their de�nitions, we must account for the context � in which an expressionmight occur. For root terms, serious expressions, and trivial expressions, the notion of validityis derived directly from the property we are trying to prove; for continuations it arises from theconsiderations of logical relations as motivated above. We also streamline the de�nitions by con-sidering separately the case of a trivial variable v, since such a variable is never the result of thetranslation of a trivial DS term (see Theorem 1 (3)).De�nition 1(1) r0 is valid if `CRootVar r0.(2) e0 is �-valid if � `CExpVar e0.(3) t0 is valid if � `CTrivVar t0 ; � for every �.(4) � is �-valid if(a) �; v `CExpVar �(v), and(b) � `CExpVar �(t0), for any valid t0.This de�nition is more complex than it may appear at �rst, since it involves meta-level appli-cations �(v) and �(t0) and therefore, implicitly, substitution.Theorem 1(1) If ` r DRoot�! r0 then r0 is valid. 7

(2) If � is �-valid and ` e ; � DExp�! e0 then e0 is �-valid.(3) If ` t DTriv�! t0 then t0 is valid.Proof: By mutual induction on the derivations R, E , and T of ` r DRoot�! r0, ` e ; � DExp�! e0, and` t DTriv�! t0, respectively.Case R = E` e ; [t] k t DExp�! e0` e DRoot�! �k:e0Then � = [t] k t is �-valid:(a) �; v `CTrivVar v ; �� `CExpVar k v holds, and(b) � `CTrivVar t0 ; �� `CExpVar k t0 for any valid t0.Hence, by induction hypothesis (2) on E , � `CExpVar e0, and thus `CRootVar �k:e0.Case E = E1(t0)` e1 ; [t1] t0 t1 �v:�(v) DExp�! e01(t0) E0` e0 ; [t0] e01(t0) DExp�! e0` e0 e1 ; � DExp�! e0Assume � is �-valid. We need to show that �0 = [t0] e01(t0) is �-valid, since then � `CExpVar e0 byinduction hypothesis (2) on E0. Thus we need to show properties (a) and (b) for �0.(a) We need �; v0 `CExpVar �0(v0). Consider E1(v0)` e1 ; [t1] v0 t1 �v:�(v) DExp�! e01(v0). We would liketo show that �1 = [t1] v0 t1 �v:�(v)is �; v0-valid, since then e01(v0) = �0(v0) is �; v0-valid by induction hypothesis (2) onE1(v0). Therefore we need to consider the two cases of De�nition 1(4).(a) �; v0; v1 `CExpVar �1(v1). We derive this as follows:�; v0; v1 `CTrivVar v1 ; �; v0 �; v0 `CTrivVar v0 ; � since � is �-valid�; v `CExpVar �(v)�; v0; v1 `CExpVar v0 v1 �v:�(v)(b) �; v0 `CExpVar �(t01), where t01 is valid. This is established by the derivationsince t01 is valid�; v0 `CTrivVar t01 ; �; v0 �; v0 `CTrivVar v0 ; � since � is �-valid�; v `CExpVar �(v)�; v0; v1 `CExpVar v0 t01 �v:�(v)Thus �1 is �; v0-valid. Therefore, by induction hypothesis on E1(v0),�; v0 `CExpVar �0(v0):8

(b) We need � `CExpVar �0(t00) for any valid t00. ConsiderE1(t00)` e1 ; [t1] t00 t1 �v:�(v) DExp�! e01(t00)| {z }= �0(t00)We would like to show that �1 = [t1] t00 t1 �v:�(v)is �-valid, so we can apply the induction hypothesis to E1(t00). Again, we need to considerthe two clauses of De�nition 1(4).(a) �; v1 `CExpVar �1(v1). We derive this as follows:�; v1 `CTrivVar v1 ; � since t00 is valid� `CTrivVar t00 ; � since � is �-valid�; v `CExpVar �(v)�; v1 `CExpVar t00 v1 �v:�(v)(b) � `CExpVar �1(t01) for any valid t01. We construct:since t01 is valid� `CTrivVar t01 ; � since t00 is valid� `CTrivVar t00 ; � since � is �-valid�; v `CExpVar �(v)� `CExpVar t00 t01 �v:�(v)Hence �1 is �-valid and thus � `CExpVar e01(t00)| {z }= �0(t00) by induction hypothesis (2) on E1(t00).Thus �0 is �-valid. Hence e0 is valid by induction hypothesis (2) on E0.Case E = T` t DTriv�! t0` t ; � DExp�! �(t0) .By induction hypothesis (3) on T , t0 is valid. Since we assume that � is �-valid, �(t0) is also�-valid by clause (b) in De�nition 1.Case T = ` x DTriv�! x . Then � `CTrivVar x ; � is an axiom for any �.Case T = R` r DRoot�! r0` �x:r DTriv�! �x:r0 . Then we construct by i.h. (1) on R`CRootVar r0� `CTrivVar �x:r0 ; � . 25 Implementation in ElfIn this section we show the implementations of the DS and CPS terms, CPS transformation,ordering, and the proof that the results of the CPS transformation are valid. Familiarity with theLF logical framework [5], its methodology, and it implementation in Elf [10] is assumed. Someimplementation-speci�c details will be mentioned in the commentary.9

5.1 Direct-style termsRecall the information de�nition of direct-style (DS) terms in BNF form.DS (Root) Terms r ::= eDS (Serious) Expressions e ::= e0 e1 j tDS Trivial Expressions t ::= x j �x:rWe only remark that the representation uses higher-order abstract syntax [11] to represent object-level abstractions, and that the natural inclusions (e.g., every trivial expression is an expression)are modeled by explicit coercions (e.g., dtriv_dexp).droot : type. %name droot Rdexp : type. %name dexp Edtriv : type. %name dtriv Tdexp_droot : dexp -> droot.dapp : dexp -> dexp -> dexp.dtriv_dexp : dtriv -> dexp.dlam : (dtriv -> droot) -> dtriv.Note that dlam abstracts over an argument of type dtriv, thus encoding the fact that variablesx are trivial expressions. The %name declarations indicate preferred variable names for syntacticclasses, in case the Elf interpreter has to synthesize names (which is a frequent occurrence in duringtype reconstruction).5.2 CPS termsRecall the de�nition of continuation-passing style (CPS) terms in BNF form.CPS (Root) Terms r ::= �k:eCPS (Serious) Expressions e ::= e0 e1 �v:e j k tCPS Trivial Expressions t ::= x j �x:r j vCPS terms are modelled using the same principles as DS terms, but they introduce a new con-sideration. The two-level CPS transformation from Section 2 shows that a continuation is bestconsidered as a meta-level function which, when applied to a trival term, yields an expression. Ittherefore has type ctriv -> cexp. An abstraction over a continuation (as is necessary for a rootterm �k:e) thus is a third-order construct! This is rare and indicates that we are exploiting theexpressive power of the meta-language to a great extent.croot : type. %name croot Rcexp : type. %name cexp Ectriv : type. %name ctriv T% ccont : type = ctriv -> cexp. %name ccont Krlam : ((ctriv -> cexp) -> cexp) -> croot.capp : ctriv -> ctriv -> (ctriv -> cexp) -> cexp.clam : (ctriv -> croot) -> ctriv.Note that Elf currently does not support de�nitions, so we must write the expanded version ofthe continuation type ccont by hand. It is inserted in the source only as a comment.10

5.3 The CPS transformationThe judgments in Figure 2 can be easily transcribed into Elf. Just like the inference rules them-selves, the corresponding declarations below should be understood schematically|the free variablesare implicitly quanti�ed. Elf's type reconstruction determines the most general type for the freevariables in each declaration.Instead of d : A -> (B -> C) we often use the form d : C <- B <- A to emphasize the op-erational interpretation of the declarations as a logic program (to solve C �rst solve B then A). Inthis case, the logic program transforms DS terms to CPS terms. The %mode pragmas establishthe role of input (+) and output (-) arguments to a predicate. They are checked for consistency,thus providing operational correctness guarantees beyond type correctness. The %lex annotationpostulates a termination ordering on the given arguments and modes which is checked by Elf. Inthis case we simply use the subterm ordering on the �rst argument of the three mutually recursivejudgments.cst_r : droot -> croot -> type. %name cst_r CRcst_e : dexp -> (ctriv -> cexp) -> cexp -> type. %name cst_e CEcst_t : dtriv -> ctriv -> type. %name cst_t CT%mode -cst_r +R -R'%mode -cst_e +E +K -E'%mode -cst_t +T -T'%lex {R E T}cst_r_dexp : cst_r (dexp_droot E) (rlam E')<- ({k:ctriv -> cexp} cst_e E k (E' k)).cst_e_dapp :cst_e (dapp E0 E1) K E'<- ({t0:ctriv} cst_e E1 ([t1:ctriv] capp t0 t1 K) (E1' t0))<- cst_e E0 ([t0:ctriv] E1' t0) E'.cst_e_dtriv : cst_e (dtriv_dexp T) K (K T')<- cst_t T T'.cst_t_dlam : cst_t (dlam R) (clam R')<- ({x:dtriv} {x':ctriv} cst_t x x' -> cst_r (R x) (R' x')).The left premise of the rule for applications e0 e1 is required to be parametric in t0. This isrepresented by a dependently typed function from t0 to a derivation of` e1 ; [t1] t0 t1 �v:�(v) DExp�! e01(t0):In Elf's concrete syntax this type is written as{t0:ctriv} cst_e E1 ([t1:ctriv] capp t0 t1 K) (E1' t0)Note that we have silently �-reduced �v:�(v) and simply written K. This is a matter of style ande�ciency, but not essential, since the de�nitional equality of the Elf meta-language is ��-conversion.11

5.4 Ordering over parameters of continuationsIn order to describe the ordering over parameters of continuations, we require a notion of stackwhich is easily de�ned. The %infix declaration makes `,' a left-associative in�x operator with an(arbitrary) binding strength of 10.stack : type. %name stack Xidot : stack., : stack -> ctriv -> stack. %infix left 10 ,The three mutually recursive judgments regarding variable ordering are easily translated intoElf. Note that the cases concerning variables x, v and k must be given wherever such variablesare introduced, rather than globally. This is a consequence of the representation technique ofhigher-order abstract syntax.ord_r : croot -> type. %name ord_r ORord_e : stack -> cexp -> type. %name ord_e OEord_t : stack -> ctriv -> stack -> type. %name ord_t OT%mode -ord_r +R%mode -ord_e +Xi +E%mode -ord_t +Xi' +T -Xi''%lex {R E T}ord_r_rlam : ord_r (rlam E)<- ({k:ctriv -> cexp}({Xi:stack} {T:ctriv}ord_e Xi (k T) <- ord_t Xi T dot)-> ord_e dot (E k)).ord_e_capp : ord_e Xi (capp T0 T1 E)<- ord_t Xi T1 Xi1<- ord_t Xi1 T0 Xi0<- ({v:ctriv}({Xi':stack} ord_t (Xi' , v) v Xi')-> ord_e (Xi0 , v) (E v)).ord_t_clam : ({Xi:stack} ord_t Xi (clam R) Xi)<- ({x:ctriv}({Xi':stack} ord_t Xi' x Xi')-> ord_r (R x)).5.5 The proofThe informal proof in Section 4 that continuation parameters obey a stack-like discipline can betranslated into Elf using the technique of higher-level judgments (see, for example, [12]). Our(constructive) proof may be seen as containing an algorithm for computing a derivation R0 of`CRootVar r0 from a derivation R of ` r DRoot�! r0. In Elf, this algorithm is implemented as a logicprogram for transforming R into R0; declaratively it is a higher-level judgment relating derivationsR and R0. Properties of these higher-level judgments such as termination can then be establishedautomatically. 12

In order to match the de�nition of the CPS transformation closely, our formalization does notuse explicit de�nitions of validity except for continuations �, which would otherwise be unwieldy.valid_k : stack -> (ctriv -> cexp) -> type.%mode -valid_k +Xi +K%lex Kvld_k : valid_k Xi K<- ({v:ctriv}({Xi':stack} ord_t (Xi' , v) v Xi')-> ord_e (Xi , v) (K v))<- ({t':ctriv}({Xi:stack} ord_t Xi t' Xi)-> ord_e Xi (K t')).The proof is implemented by three mutually recursive higher-level judgments for root terms,expressions, and trivial expressions. Each clause corresponds to one case of the informal proof.Each appeal to an induction hypothesis appears as a recursive call.proof_r : cst_r R R' -> ord_r R' -> type.proof_e : cst_e E K E' -> valid_k Xi K -> ord_e Xi E' -> type.proof_t : cst_t T T' -> ({Xi:stack} ord_t Xi T' Xi) -> type.%mode -proof_r +CR -OR%mode -proof_e +CE +VK -OE%mode -proof_t +CT -OT%lex {CR CE CT}pf_r : proof_r (cst_r_dexp CE) (ord_r_rlam OE)<- ({k:ctriv -> cexp}{ok : {Xi:stack} {T:ctriv} ord_e Xi (k T) <- ord_t Xi T dot}proof_e (CE k)(vld_k([t':ctriv] [CT:{Xi:stack} ord_t Xi t' Xi]ok dot t' (CT dot))([v:ctriv] [CT:{Xi':stack} ord_t (Xi' , v) v Xi']ok (dot , v) v (CT dot)))(OE k ok)).pf_e_dapp : proof_e (cst_e_dapp CE0 CE1) (vld_k _ OE) OE'<- ({v0 : ctriv} {OT0 : {Xi':stack} ord_t (Xi' , v0) v0 Xi'}proof_e (CE1 v0)(vld_k([t1:ctriv] [OT1:{Xi':stack} ord_t Xi' t1 Xi']ord_e_capp OE (OT0 Xi) (OT1 (Xi , v0)))([v1:ctriv] [OT1:{Xi':stack} ord_t (Xi' , v1) v1 Xi']ord_e_capp OE (OT0 Xi) (OT1 (Xi , v0))))(VE1'V v0 OT0))<- ({t0 : ctriv} {OT0 : {Xi':stack} ord_t Xi' t0 Xi'}proof_e (CE1 t0)(vld_k([t1:ctriv] [OT1:{Xi':stack} ord_t Xi' t1 Xi']13

ord_e_capp OE (OT0 Xi) (OT1 Xi))([v1:ctriv] [OT1:{Xi':stack} ord_t (Xi' , v1) v1 Xi']ord_e_capp OE (OT0 Xi) (OT1 Xi)))(VE1'T t0 OT0))<- proof_e CE0 (vld_k VE1'T VE1'V) OE'.pf_e_dtriv : proof_e (cst_e_dtriv CT) (vld_k OE _) (OE T' OT)<- proof_t CT OT.pf_t_dlam : proof_t (cst_t_dlam CR) (ord_t_clam OR)<- ({x:dtriv} {x':ctriv}{CT: cst_t x x'}{OT:{Xi':stack} ord_t Xi' x' Xi'}proof_t CT OT-> proof_r (CR x x' CT) (OR x' OT)).From the implementation above it is actually quite easy (with a little experience) to reconstructthe informal proof.The proof of the property of occurrences of continuations k themselves (see Figure 3) can alsoeasily be represented in the same style. It can be found in Appendix A.5.6 An exampleWe now reconsider the direct-style term from Section 1.�x:f x (g x)Under appropriate declarations for f and g as variables, this term is represented in Elf by(dexp_droot(dtriv_dexp(dlam [x:dtriv]dexp_droot (dapp (dapp (dtriv_dexp f) (dtriv_dexp x))(dapp (dtriv_dexp g) (dtriv_dexp x)))))): droot.It is rather lengthy due to the coercions, but we could easily write a judgment to insert appropriatecoercions into pure �-term. In order to translate this we may pose the following query.CR:cst_r (dexp_droot(dtriv_dexp(dlam [x:dtriv]dexp_droot (dapp (dapp (dtriv_dexp f) (dtriv_dexp x))(dapp (dtriv_dexp g) (dtriv_dexp x))))))R.which yields the CPS term R (eliding the derivation CR)R =rlam [k:ctriv -> cexp]k (clam [x':ctriv] rlam [k1:ctriv -> cexp]capp f' x' ([t01:ctriv] capp g' x' ([t1:ctriv] capp t01 t1 k1))),CR = ... 14

Modulo variable names, this corresponds to�k:k (�x:�k:f x �v1:g x�v2:v1 v2 �v3:k v3):The omitted term CR represents the derivation of the judgment` �x:f x (g x) DRoot�! �k:k (�x:�k:f x�v1:g x �v2:v1 v2 �v3:k v3)which was constructed by the Elf interpreter in answer to the �rst query. We can apply theimplementation of the meta-theory to translate CR into a derivation showing that the conditions onoccurrences of continuation parameters are satis�ed in this example, that is, into a derivation of`CRootVar �k:k (�x:�k:f x �v1:g x�v2:v1 v2 �v3:k v3):The query is the following. The �rst argument to proof_r is the derivation CR elided above.proof_r(cst_r_dexp [k:ctriv -> cexp]cst_e_dtriv(cst_t_dlam [x:dtriv] [x'1:ctriv] [CT:cst_t x x'1]cst_r_dexp [k1:ctriv -> cexp]cst_e_dapp(cst_e_dapp (cst_e_dtriv cst_f) ([t0:ctriv] cst_e_dtriv CT))([t0:ctriv]cst_e_dapp (cst_e_dtriv cst_g) ([t01:ctriv] cst_e_dtriv CT))))OR.We know that a query of this form will always succeed. In this case it produces the substitutionOR =ord_r_rlam [k:ctriv -> cexp][ok:{Xi:stack} {T:ctriv} ord_t Xi T dot -> ord_e Xi (k T)]ok dot(clam [x':ctriv] rlam [k1:ctriv -> cexp]capp f' x' ([t0:ctriv] capp g' x' ([t1:ctriv] capp t0 t1 k1)))(ord_t_clam([x'1:ctriv] [OT:{Xi':stack} ord_t Xi' x'1 Xi']ord_r_rlam [k1:ctriv -> cexp][ok1:{Xi:stack} {T:ctriv} ord_t Xi T dot -> ord_e Xi (k1 T)]ord_e_capp([v0:ctriv] [OT01:{Xi':stack} ord_t (Xi' , v0) v0 Xi']ord_e_capp([v1:ctriv] [OT1:{Xi':stack} ord_t (Xi' , v1) v1 Xi']ord_e_capp([v:ctriv][CT:{Xi':stack} ord_t (Xi' , v) v Xi']ok1 (dot , v) v (CT dot))(OT01 dot) (OT1 (dot , v0)))(ord_t_g (dot , v0)) (OT (dot , v0)))(ord_t_f dot) (OT dot))dot).which shows that the CPS term above satis�es the ordering criterion.15

DCRoot : CRoot ! DRootDCRoot[[�k:e]] = DCExp[[e]]DCExp : CExp ! DExpDCExp[[t0 t1 �v:e]] = DCExp[[e]] [v := DCTriv[[t0]] DCTriv [[t1]]]DCExp[[k t]] = DCTriv[[t]]DCTriv : CTriv ! DExpDCTriv[[x]] = xDCTriv [[�x:r]] = �x:DCRoot[[r]]DCTriv[[v]] = vFigure 5: The call-by-value DS transformation formulated as a function and using substitutions6 The Direct-Style TransformationHaving formalized and proven the occurrences of continuation parameters in CPS terms, we cannow show the transformation from a CPS term back to direct style. Note that this transformationonly applies to terms satisfying occurrence and ordering conditions.The following implementation uses substitution (see Figure 5). An implementation that uses astack � without explicitly relying on substitution is also possible (see Figures 6 and 7).dst_r : croot -> droot -> type.dst_e : cexp -> dexp -> type.dst_t : ctriv -> dexp -> type.%mode -dst_r +R -R'%mode -dst_e +E -E'%mode -dst_t +T -T'%lex {R E T}dst_r_rlam : dst_r (rlam E) (dexp_droot E')<- ({k:ctriv -> cexp}({T:ctriv} {E:dexp} dst_e (k T) E <- dst_t T E)-> dst_e (E k) E').dst_e_capp : dst_e (capp T0 T1 ([v:ctriv] E v)) E'<- dst_t T0 E0<- dst_t T1 E1<- ({v:ctriv} dst_t v (dapp E0 E1) -> dst_e (E v) E').dst_t_clam : dst_t (clam R) (dtriv_dexp (dlam R'))<- ({x:ctriv} {x':dtriv}dst_t x (dtriv_dexp x')-> dst_r (R x) (R' x')).16

DCRoot : CRoot ! DRootDCRoot[[�k:e]] = DCExp[[e]] �DCExp : CExp ! List(DExp) ! DExpDCExp[[t0 t1 �v:e]] � = let he01; �1i = DCTriv[[t1]] �in let he00; �0i = DCTriv[[t0]] �1in DCExp[[e]] (�0; e00 e01)DCExp[[k t]] � = let he0; �i = DCTriv[[t]] �in e0DCTriv : CTriv ! List(DExp) ! (DExp � List(DExp))DCTriv[[x]] � = hx; �iDCTriv[[�x:r]] � = h�x:DCRoot[[r]]; �iDCTriv[[v]] h�; e0i = he0; �iwhere \let x = e in b" abbreviates \([x]b)(e)" and thus denotes an administrative reduction.Figure 6: The call-by-value DS transformation formulated as a function and using a stack
� ` e CExp�! e0` �k:e CRoot�! e0� ` t1 CTriv�! e01; �1 �1 ` t0 CTriv�! e00; �0 �0; e00 e01 ` e CExp�! e0� ` t0 t1 �v:e CExp�! e0 � ` t CTriv�! e0; �� ` k t CExp�! e0� ` x CTriv�! x; � ` r CRoot�! r0� ` �x:r CTriv�! �x:r0; � �; e0 ` v CTriv�! e0; �Figure 7: The call-by-value DS transformation formulated as a judgment and using a stack17

7 Related WorkThe structure of CPS terms has been little investigated. Most authors (e.g., Wand and Oliva [18])implicitly rely on conformant CPS terms to run them on a stack machine.In their work on reasoning about CPS programs, Sabry and Felleisen also rely on the unicity ofcontinuations parameters in the pure �-calculus [14, 15].In their work on separating stages in the CPS transformation [7], Lawall and Danvy noticed thatthe sequencing order encoded in CPS terms is accounted for by the occurrences of parameters ofcontinuations. In his work on the DS transformation [2], Danvy characterized the ordering of Figure4, but did not prove it formally. During spring 1993, Danvy and Pfenning carried out the workreported here. Later, in her PhD work on the inverseness of the CPS and the DS transformations,Lawall independently proved by hand a similar ordering [6, Appendix A.1.1].8 Conclusion and IssuesWe have formalized and proven the occurrences of continuation parameters and of formal param-eters of continuations in CPS terms. This new knowledge about continuations parameters in CPSterms can enable their more e�cient implementation. For example, the transformation of conform-ing CPS terms back to direct style can be implemented using a stack to carry out substitutions(see Figures 6 and 7). This new formulation also makes it simpler to prove that the CPS and theDS transformations are inverses of each other [6] and to automate this proof.The implementation in Elf is small but non-trivial. It captures the computational content of thetranslations and the meta-theoretic reasoning in a declarative, yet executable way. The frameworkis built around the notions of substitution and and meta-level function, which leads to a very elegantand direct encoding. This representation is unusual in that it requires third-order constants (since itabstracts over continuations), thus exemplifying a new technique for representing deductive systemsin LF interesting in its own right. Since the encoding suggested the proof technique, this paperdemonstrates, on a small scale, the value of a logical framework as a conceptual tool in the studyof the theory of programming languages.A Occurrences of Continuations ParametersHere we present the implementation of the occurrence condition on continuations parameters in CPSterms resulting from a CPS transformation (see Figure 3). Again, we use a third-order judgment.occ_r: croot -> type. %name occ_r KRocc_e: ((ctriv -> cexp) -> cexp) -> type. %name occ_e KEocc_t: ctriv -> type. %name occ_t KT%mode -occ_r +R%mode -occ_e +E%mode -occ_t +T%lex {R E T} 18

occ_r_rlam: occ_r (rlam E)<- occ_e E.occ_e_capp: occ_e ([k:ctriv -> cexp] capp T0 T1 ([v:ctriv] (E k v)))<- occ_t T0<- occ_t T1<- ({v:ctriv}occ_t v-> occ_e ([k:ctriv -> cexp] (E k v))).occ_e_cret: occ_e ([k:ctriv -> cexp] k T)<- occ_t T.occ_t_clam: occ_t (clam R)<- ({x:ctriv}occ_t x-> occ_r (R x)).%mode -occ_k +K%lex Kocc_k: ((ctriv -> cexp) -> (ctriv -> cexp)) -> type. %name occ_k KKocc_k_k : occ_k K<- ({t:ctriv}occ_t t-> occ_e ([k:ctriv -> cexp] K k t)).Next is the implementation of the proof that the CPS transformation of DS terms yields CPSterms that satisfy the occurrence conditions of continuations parameters.kproof_r : cst_r R R' -> occ_r R' -> type.kproof_e : ({k:ctriv -> cexp} cst_e E (K k) (E' k))-> occ_k K -> occ_e E' -> type.kproof_t : cst_t T T' -> occ_t T' -> type.%mode -kproof_r +CR -KR%mode -kproof_e +CE +KK -KE%mode -kproof_t +CT -KT%lex {CR CE CT}kproof_r_dexp : kproof_r (cst_r_dexp CE) (occ_r_rlam KE)<- kproof_e CE (occ_k_k [t:ctriv] [KT:occ_t t] occ_e_cret KT)KE.kproof_e_dapp : kproof_e ([k:ctriv -> cexp] cst_e_dapp (CE0 k) (CE1 k))(occ_k_k KE') KE<- ({t0:ctriv} {KT0:occ_t t0}kproof_e ([k] CE1 k t0)(occ_k_k [t1:ctriv] [KT1:occ_t t1]occ_e_capp KE' KT1 KT0)(KE1 t0 KT0))<- kproof_e CE0 (occ_k_k KE1) KE.19

kproof_e_dtriv : kproof_e ([k:ctriv -> cexp] cst_e_dtriv CT) (occ_k_k KE')(KE' T' KT)<- kproof_t CT KT.kproof_t_dlam : kproof_t (cst_t_dlam CR) (occ_t_clam KR)<- ({x:dtriv} {x':ctriv}{Cx: cst_t x x'} {Kx':occ_t x'}kproof_t Cx Kx' -> kproof_r (CR x x' Cx) (KR x' Kx')).References[1] William Clinger, editor. Proceedings of the 1992 ACM Conference on Lisp and FunctionalProgramming, LISP Pointers, Vol. V, No. 1, San Francisco, California, June 1992. ACM Press.[2] Olivier Danvy. Back to direct style. Science of Computer Programming, 22(3):183{195, 1994.[3] Olivier Danvy and Andrzej Filinski. Representing control, a study of the CPS transformation.Mathematical Structures in Computer Science, 2(4):361{391, December 1992.[4] Olivier Danvy and Julia L. Lawall. Back to direct style II: First-class continuations. In Clinger[1], pages 299{310.[5] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for de�ning logics. Journalof the ACM, 40(1):143{184, 1993. A preliminary version appeared in the proceedings of theFirst IEEE Symposium on Logic in Computer Science, pages 194{204, June 1987.[6] Julia L. Lawall. Continuation Introduction and Elimination in Higher-Order ProgrammingLanguages. PhD thesis, Computer Science Department, Indiana University, Bloomington,Indiana, USA, July 1994.[7] Julia L. Lawall and Olivier Danvy. Separating stages in the continuation-passing style trans-formation. In Susan L. Graham, editor, Proceedings of the Twentieth Annual ACM Symposiumon Principles of Programming Languages, pages 124{136, Charleston, South Carolina, January1993. ACM Press.[8] Flemming Nielson and Hanne Riis Nielson. Two-Level Functional Languages, volume 34 ofCambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1992.[9] Frank Pfenning. A proof of the Church-Rosser theorem and its representation in a logicalframework. Journal of Automated Reasoning. To appear. A preliminary version is available asCarnegie Mellon Technical Report CMU-CS-92-186, September 1992.[10] Frank Pfenning. Logic programming in the LF logical framework. In G�erard Huet and GordonPlotkin, editors, Logical Frameworks, pages 149{181. Cambridge University Press, 1991.[11] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Mayer D. Schwartz,editor, Proceedings of the ACM SIGPLAN'88 Conference on Programming Languages Designand Implementation, SIGPLAN Notices, Vol. 23, No 7, pages 199{208, Atlanta, Georgia, June1988. ACM Press.[12] Frank Pfenning and Ekkehard Rohwedder. Implementing the meta-theory of deductive sys-tems. In D. Kapur, editor, Proceedings of the 11th International Conference on AutomatedDeduction, pages 537{551, Saratoga Springs, New York, June 1992. Springer-Verlag LNAI 607.20

[13] Gordon D. Plotkin. Call-by-name, call-by-value and the �-calculus. Theoretical ComputerScience, 1:125{159, 1975.[14] Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing style.In Clinger [1], pages 288{298.[15] Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing style.LISP and Symbolic Computation, 6(3/4):289{360, December 1993.[16] Guy L. Steele Jr. Rabbit: A compiler for Scheme. Technical Report AI-TR-474, Arti�cialIntelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts,May 1978.[17] W. W. Tait. Intensional interpretation of functionals of �nite type I. Journal of SymbolicLogic, 32:198{212, 1967.[18] Mitchell Wand and Dino Oliva. Proving the correctness of storage representations. In Clinger[1], pages 151{160.

21

