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1 Introduction

Throughout the semester we have been talking about the polarity of types. Fundamentally, we
can observe values of positive types but we can only interact with values of negative types. While
this distinction is reflected in the dynamics of ND and Sax, it is not made explicit in the types
themselves. Polarization does just that.

Polarization [Girard, 1991] in its most straightforward incarnation explicitly divides the lan-
guage of types into positive and negative ones, requiring explicit modal operators to shift between
them.

There are many consequences of this decision, both proof-theoretic and computational. On
the proof-theoretic side, we obtain a system of focusing [Andreoli, 1992, Liang and Miller, 2009,
Simmons, 2014] which in turn is the basis of logical frameworks such as CLF ([Watkins et al., 2002,
Cervesato et al., 2002, Schack-Nielsen, 2011], used in Lecture 24 to formalize linear Sax). We have
also already used this as the basis for pattern matching in Lecture 4. Polarization gives rise to
logic programming engines [Lépez et al., 2005] and efficient theorem provers [McLaughlin and
Pfenning, 2009] because it allows us to perform “big-step inferences” while remaining logically
complete [Andreoli, 2001].

On the computational side (or, to be more precise, on the side of computation-as-proof-reduction)
we obtain call-by-push-value (CBPV) [Levy, 2001, 2006]. Call-by-push-value was conceived as a
unifying framework for call-by-value and call-by-name, rich enough to also encompass effects.
Levy’s values are all of positive type, his computations are all of negative type, where he distin-
guishes terminal computations as what we have called non-observable values. The slogan is values
are, and computations do.

We do not give a full account of call-by-push-value, which is extensively covered in the refer-
ences. Instead, we reimagine it in the context of this course.

2 Basic Polarized Types

We stratify the language of types into value types (which are positive) and computation types (which
are negative).

Value types AB = AXB|1|+{l:A}eer | TA
Computation types A,B = A—B|&{(:A}wer | 1A
Contexts r n= x: AT, Te| (4)

LECTURE NOTES APRIL 15, 2025
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Polarized Types L22.2

Because the design of ND was significantly influenced by call-by-push-value, the meaning of all
types remains what is has been for us all along. For example, 1A is inhabited by suspended
computations (which count as values), while | A represents the trivial computation consisting of a
value. We also restrict the context to assign only positive types to variables, which therefore stand
for values.

Here is a small table with the mapping of notations.

ND CBPV

TA UA

1A FA
+{E : Ag}geL ZEEL Ag
&{l: Ag}eer [leer A

If we think of value types as being at one mode (say v) and computation types being at another
mode (say c), the the shifts are implicitly decorated as 1V A and |’ A. The only surprising thing here
may be that the function type is of mixed mode:

A—B~A,— B,

Because polarization is based on the proof-theoretic properties of the types viewed as proposi-
tions, there is not much choice here. We know that implication A O B is right invertible and
negative. In order to continue inversion, since means A needs to be positive so it is left invertible.
And we want to continue inversion because any change with respect to inversion should only be
due to embedded shifts. If we encode this as

A—-B2(|A =B 72

its meaning would change: rather than a function taking as argument a value of type A it is a
function taking as argument a computation of type | A, that is, a computation returning a value of
type A. When and how should such a computation be executed? Especially in the presence of
effects, there is no clear answer to this, so such a definition would break the call-by-push-value
discipline.

So in call-by-push-value, we have a binary connective with the two operands being at different
mode, a so-called skew connective. We can do a quick check if it actually makes sense to have such
a connective from a proof-theoretic perspective, that is, in the sequent calculus. We write Ay, — B,
for a skew proposition (that is, type) at mode m.

T, A, - B, I'>k TFA, A BpyhkC,
— R —L
T Ay, — B, T:A; A, — By C,

First, we observe that for the right rule to be invertible (as it should be) we need k£ > m in the
dependency order. Second, we need the condition I' > k in the —L rule in order to maintain
independence. Nothing needs to be checked for the second premise since A > r and m > r are
known by presupposition of independence for the conclusion.

Now recall the general rule of cut.

I'>m>r T'HA, AA,FC,
I';ARC,

cut
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Polarized Types L22.3

We can form the particular cut where — R meets — L.

D’ & &
I'A.+ By, A >k AFA, Ao, B,FC.
=" R L
I'>m>r Fl—Ak—>Bm Al;AQ;Ak%Bml—Cr
cut
I'iA; Ag G
—
& D’
Alszm All—Ak F,Akl—Bm
cut &2
(T;A1)>m>r I'; A1 - By, Ay, B, F C,
cut
I';A15A -G

The only possible question here is k£ > m in the condition of the first cut, but that is guaranteed by
the presupposition that A, — B, is well-formed.

So, yes, the skew implication A; — B,, connective is a first-class connective if £ > m, and
one may only object on the grounds of minimalism since there is a logically equivalent formula
(1¥ Ap) — B, that is not skew. But, as discussed above, in the setting of call-by-push-value those
two do not mean the same thing.

3 Polarized Expressions

The language of expressions splits into (large) values v and computations e, with the judgments

T'Fo: A
I'kFe: A

where I consists entirely of value typings = : A. The mode discipline would allow variables = : A
to range over computation in the second judgment, but this is ruled out basically because of the
possible presence of effects in computations. We will talk about this a bit more in the next lecture
on the Enriched Effect Calculus (EEC), and below when we discuss the dynamics.

We have the following syntax, taken from ND rather than from CBPV.

Values v o= (v1,v2) (A x B)
0 (1)
| k() (+{¢: Ac})
| suspe (14)
Computations e == Azr.e|ev (A— B)
| {l=edoer | ek (&{0: A})
| wv.force (T4)
| (o) | matche ((z) = ) (14)
|  matcho ((z,y) =€) (A x B)
|  matchov (()=¢) (1)
|  match v {{(x;) = es}leer (+{0: As})

We might expect that match eliminations over values of positive types also exist in the language
of values. This is indeed semantically and proof-theoretically justifiable—Levy [2006] call this a
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Polarized Types L22.4

language with complex values. Unfortunately it negates the slogan “values are” because now we
have to compute them. It also complicates his stack machine that then has to construct simple
values from complex values without the possibility of effects. This is certainly possible (see, for
example, Lecture Notes on the K Machine), just a little unfortunate in this context.

4 A Stack Machine

To justify the name “call-by-push-value” we have to see where values are actually pushed. The
abstract machine state has the form
e> K

where e is a computation and K is a stack. K is also called the continuation since it represents all
the computation that has to take place after e completes. We show some of the transition rules for
the machine; others are easily copied from the K machine or imported from Levy’s description.

(push) ew > K — e > _v; K
(pop,) Az.e(z) > _v; K — ev) > K

The first rule push pushes a value onto the stack K and therefore the name call-by-push-value.
The second rule pops such a value v from the stack and substitutes it for = in e. If we denote the
empty stack (also called the initial continuation) by € then

Az.e(z) > €

is a final configuration. Lazy records work analogously, so let’s concentrate on the shifts.
Regarding the upshift, susp e is a value, so the only relevant rule is

(force) (suspe).force > K — e > K
Regarding the downshift, we have

(bind) matche ((z) = ¢)> K — er>match _ ({(z) = €'(x)); K
(return) (v) > match _ ((z) = €'(z)); K — €v)> K

In CBPYV, (v) is written return v. We have named the rules bind and return because | A plays
the role of a strong monad by sequencing computations, passing on the return value of the first
expression to the second. This yields another final machine state:

(v)y > €

We imagine that even though this is a computation, the value v in this case would be observable
representing the overall outcome of the computation.

Typing of the stack machine is actually somewhat interesting and also relevant to the next
lecture. We need to express that the computation e in the state e > K is a computation of type A
which is expected by the continuation K. We writeI" | A+ K : C for this judgment.

'te:A T|AFK:C
I'Fex> K:C
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Polarized Types L22.5

This is the only time we consider a computation among the antecedents, separated from the others
by a vertical bar. We only show two representative rules.

ITrv:d T|BFK:C
NCkre:C ' A—BF(_v;K):C

It’s easy to verify that the transition rules for the abstract machine preserve typing. When the
machine actually executes, I' in these rules will be empty because we only evaluated closed com-
putations. We still show the rules in this generality because this will be helpful in the next lecture.
Levy also considers effects in the computations such as printing and updating a state. This is also
something we’ll consider in the next lecture.

5 Translating Call-By-Value

One of Levy’s motivations is to design call-by-push-value as a subsuming language into which
we can embed call-by-value and call-by-name. The key is the type translation A", where A is a
call-by-value type, that is, a type in the ND language. We can think of it as a translation from ND
to a fragment of ND with some special properties. Positive types are translated to corresponding
positive types, while we insert shifts in the translation of negative types. This can be improved to
avoid some double shifts.

(A= B — HAY 5 |BY)
(Al Agtoer)” = T&{L: LA }eer
(Ax B)Y = A" xBY

(1)° =1

(+H{€: Arteer)’ = +{l: Af}eer

We translate call-by-value expressions e to computations e, where
1A, T Ay Fer A ~ x1: Al xn t Ap e JAY

We show only the cases for functions.

() = ()
(Ax.e)¢ = (susp Az.ef)
(e1€2)¢ = match ef ({f) = match €5 ((x) = f.force z))
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