Lecture Notes on
Heap-Free Functional Programs

15-417/817: HOT Compilation
Frank Pfenning

Lecture 21
April 10, 2025

1 Introduction

Most of the material in this lecture is contained in Hofmann [2000a,b] (with further material in
Hofmann [2003]). Hofmann defines a (mostly) affinely-typed functional language with three key
properties:

1. Functions are polynomial time
2. Functions are not size-increasing
3. Functions can be implemented imperatively (in C) without using the heap

Furthermore, the language LFPL is expressive enough to express all non-size-increasing polyno-
mial time functions. The techniques have since been refined and applied, for example, for auto-
matic amortized resource analysis (AARA).

2 Primitive Recursion and Iteration

In order for functions to be polynomial time, they also need to be terminating. There is a long
history of defining patterns of recursion such that every function is terminating. We review several
that are of particular significance.

Primitive Recursion. We first consider functions on natural numbers. The schema of primitive
recursion assumes that we have already defined functions g and h and define a new function f by

f(oayl""ayn) = g(ylaayn)
f(SUCC(.f),yl,. . '7y'rl> = h(wvf(wvyla .. -7yn)7y17 s 7yn)

One can easily show by induction on the first argument that if g and h are terminating, so is f.

It is a bit unpleasant to carry the extra parameters y1,...,y,. Also, this schema is not partic-
ularly linear or affine. For example, both h and f can use z, as well as y1, ..., y,. As a first step
we can allow the result type to be functional (rather than just the type of natural numbers). This

LECTURE NOTES APRIL 10, 2025



Heap-Free Functional Programs L21.2

increases the expressive power of the language considerably, but does not jeopardize termination.
Then we could write

f(O) = /\yl- )\yn'g(ylw--ayn)
f(succ(z)) = Ayi. ... Ayn-h(@, f(z,91, - YUn) Y1y -+ Yn)

Now it is possible to enforce that the function that is returned is affine, so that the y; cannot be
freely used more than once. Therefore, we have the simpler schema

f(0) =9
f(suce(z)) = h(z, f(z))

If we write the schema as a higher-order function primrec, then we can type it as
primrecy (g: A) (h:nat—A— A) (x:nat): A

parameterized by an arbitrary type A.
This schema is also significant in the sense that it captures the functions that are extracted from
constructive proofs using mathematical induction, because in

A(0) — (Va:nat. A(xz) — A(succ(z))) — Va:nat. A(z)

we see that the proof of A(0) becomes g, the proof of the induction step becomes £, and the final
quantification over x just becomes the argument we named z.

However, if we want to program in an affine type system we see that there is still one obstacle:
x is used by h and also by the recursive call f(z).

Iteration. We can further simplify the schema to a form of iteration that does not give h access to

x.
£(0) =9
f(suee(x)) = h(f(x))
This schema is not affine in g or A, but it is affine in the argument. So as long as g and h are closed
and affine, the resulting function f is also affine.

We can enforce this by allowing only top-level definitions to be recursive, and checking the
schematic forms of the recursion to be iterations. But we can also define iteration constructs di-
rectly as terms [Hofmann, 2003].

These schemas can be uniformly extended to general inductive types. We show it only for lists,
because Hoffmann used lists of Boolean’s as his representation of binary numbers. Using binary
numbers is critical if we want to capture complexity classes of functions accurately.

f(nil) =9
fleons(z,1)) = h(z, f(I))

Here, we give h access to x but not the tail { of the list. Doing so would give use the schema for
primitive recursive functionals over lists.

3 Two Small Examples

Before we get to sizes, we can test the usual versions of append and reverse for adherence to the
schema of iteration. We have written some redundant parentheses to highlight that the recursive
calls are just on the tail of the list, so these are not only linear (and therefore affine) in ! but they
are overall linear.

LECTURE NOTES APRIL 10, 2025



Heap-Free Functional Programs L21.3

type A = ...
type list = +{'nil : 1, ’cons : A x list}

defn append (1 : list) : list -> list = fun k =>
match 1 with

| "nil() => k

| ’cons(hd, tl) => ’cons(hd, (append tl) k)

end

defn rev (1 : list) : list -> list = fun acc =>
match 1 with

| "nil () => acc

| "cons(hd, tl) => (rev tl) ('cons(hd, acc))
end

defn reverse (1 : list) = (rev 1) ('nil())

4 Capturing Space

Hofmann’s fundamental idea is to introduce a type ¢ that stands for memory cells. In the context
of ND/Sax we can think of it as typing a heap address. When writing code in his source lan-
guage LFPL, there is no concrete expression that has type ¢. We can only obtain one by reading
some data already in memory. Because data are affine, reading it means that there are no further
reference to it, so we can reuse it for new data. This is also the fundamental idea behind reuse
in Lecture 6. There, however, we did not make it available to the ND programmer directly but
viewed it as a compiler optimization available in Sax. Also, the ND language does not make any
wholesale restriction to be affine or use only specific schemas of recursion, so we do not obtain
any guarantees as Hofmann obtains in LFPL.
We then enrich the recursive types to account for space by adding a diamond <>.
type A = ...
type list = +{'nil : 1, ’"cons : <> % A x list}

We obtain access to the diamond via a variable introduced by pattern matching which can then be
reused to construct new lists. Revisiting the earlier examples:

defn append (1 : list) : list -> list = fun k =>

match 1 with

| "nil() => k

| "cons(d, hd, tl) => 'cons(d, hd, (append tl) k) % note d
end

defn rev (1 : 1list) : list -> list = fun acc =>

match 1 with

| 'nil() => acc

| "cons(d, hd, tl) => (rev tl) ('cons(d, hd, acc)) % note d
end

defn reverse (1 : list) = (rev 1) ('nil())

We see that the variable d (to be bound to an address) is freed by the match and then used in the
construction of a new cons.

LECTURE NOTES APRIL 10, 2025


http://www.cs.cmu.edu/~fp/courses/15417-s25/lectures/06-optimizations.pdf

Heap-Free Functional Programs L21.4

There is a small issue here: it looks like we construct the empty list in the definition of reverse
before calling rev. However, this is of fixed size and does not involve any addresses, so the
expression is “heap-free” in that it can be allocated on the stack. This is already built into the
definition of the list type: a cons requires an address while the empty list does not.

Importantly, we cannot double the elements of a list as follows:

defn double (1 : 1list) : list =

match 1 with

| "nil () => "nil/{()

| "cons(d, hd, tl) => "cons(d, hd, ’'cons(d, hd, double tl)) % fails
end

The problem is two-fold: for one, it is not linear in d, in other words, we do not have enough mem-
ory to create two cons cells. It is also not linear in the head of the list. However, if we have binary
numbers, then the head of the list should be a Boolean, and Booleans are not recursive. Therefore,
Hofmann allows contraction for variable of heap-free type. These are defined inductively from
Booleans and pairs; in our case we would also include other non-recursive types like unit and
sums.

Fortunately, there is a way around this issue and still double the elements in a list! We have to
equip the input list with a sufficient store of diamonds!

type bool = +{’'false : 1, ’"true : 1} % heap—-free

type list_bool = +{'nil : 1, ’'cons <> % bool * list bool}

type list2_bool = +{’'nil : 1, "cons : <> % (<> % bool) x list_bool}
defn double (1 : list2_bool) : list_bool =

match 1 with

| "nil() => "nil{()

| "cons(dl, (d2, hd), tl) => 'cons(dl, hd, ’'cons(d2, hd, double tl))
end

This now type-checks because we have two variables of type ¢, and because the type bool is
heap-free so it doesn’t have to be linear.

There is one issue overall: while the functions are guaranteed to be non-size-increasing, how
can we ever construct lists to start with? One idea is to give sufficient diamonds to the main
function to do that, but a type like ™ raises some new issues. The other is just to allocate the
data on the heap as usual (such functions being checked differently) and being content that the
property of being non-size-increasing is confined to the functions.

5 Implementation in C

Hofmann [2000a] gives an implementation of the first-order non-size-increasing functions in C,
where diamonds are inhabited by addresses, and values of non-recursive type live on the stack. I
recommend you take a look. His programs are malloc-free. In his examples he uses both lists and
binary trees, so I have a suspicion his implementation may not be sound if one takes a diamond
from a list and uses it to allocated a tree node, unless there is enough space at every heap address
for the largest type in the program. Instead of freely casting between pointers, it may also be
possible to have different flavors of diamonds.

LECTURE NOTES APRIL 10, 2025



Heap-Free Functional Programs L21.5

References

Martin Hofmann. A type system for bounded space and functional in-place update. In G. Smolka,
editor, Proceedings of the European Symposium on Programming (ESOP 2000), pages 165179, Berlin,
Germany, March 2000a. Springer LNCS 1782.

Martin Hofmann. A type system for bounded space and functional in-place update. Nordic
Journal of Computing, 7(4):258-289, November 2000b. URL http://www.cs.cmu.edu/~fp/
courses/15417-s25/misc/Hofmann00njc.pdf. A previous version was presented as
ESOP 2000.

Martin Hofmann. Linear types and non-size-increasing polynomial type computation. Information
and Computation, 183(1):57-85, 2003.

LECTURE NOTES APRIL 10, 2025


http://www.cs.cmu.edu/~fp/courses/15417-s25/misc/Hofmann00njc.pdf
http://www.cs.cmu.edu/~fp/courses/15417-s25/misc/Hofmann00njc.pdf

	Introduction
	Primitive Recursion and Iteration
	Two Small Examples
	Capturing Space
	Implementation in C

