
Lecture Notes on
Continuation-Passing Style

15-417/817: HOT Compilation
Frank Pfenning

Lecture 20
April 8, 2025

1 Introduction

Continuations are a generally useful technique in functional programming. For example, during
search we might pass a success continuation that encapsulates what needs to be done after the
current subgoal succeeds, or a failure continuation that encapsulates what need to be tried in case
the current subgoal fails. The type of a search function often looks like

search (p : problem) (sc : data→ α) (fc : α) : α

where data is the information about the solution to the subproblem passed on the to success con-
tinuation sc.

There is also the notion of first-class continuation which provides a programmatic way to cap-
ture the remainder of the computation. If we can pass this around we can jump back to an earlier
state of the computation to give us a flexible way, for example, to do backtracking. On the other
hand, first-class continuations are a control effect, which means many techniques for reasoning
about the behavior of functional programs are no longer sound. Functions may not only return a
value or diverge, they may also invoke the continuation and jump to an entirely different place in
the computation.

We can use (second-class, that is, just functions) continations as functions in defining an inter-
preter for a programming language [Reynolds, 1972]. For example, if E : exp is an expression of a
source language with functions, we might define

eval (E : exp) (K : val → val) : val

with

eval E K = match E with
| (appE1E2) ⇒ eval E1 (λV1. eval E2 (λV2. apply V1 V2 K))
. . .

where apply evaluates the result of substituting V2 for the variable abstracted over in V1 with
continuation K.

We have seen this technique in Lecture 16 when defining a translation from ND to Sax that
respects bidirectional typing. We can also adapt this to the situation here: translating from a
functional source language to an (also functional) target language in which certain aspects of the

LECTURE NOTES APRIL 8, 2025

http://www.cs.cmu.edu/~fp/courses/15417-s25/lectures/16-calling.pdf


Continuation-Passing Style L20.2

language (such call-by-value vs. call-by-name, or left-to-right vs right-to-left evaluation order) are
made explicit. This is the idea behind the CPS transformation.

It turns out that the transformation into continuation-passing style is very closely related to
our translation into destination-passing style (from ND, our functional source language, to Sax,
our imperative target language). In the case of destination-passing style, every function is given
an additional argument which is the destination for its result. In continuation-passing style, every
function is given an additional argument which is the function to call on the result. I suspect
there is a not-too-difficult theorem that formally relates these two translations; here we just rely
on intuition.

2 Functions

In much of programming language theory, functions (or more generally expressions of negative
type) are seen as the “good and elegant case” and data such as pairs or sums are the “bad and
ugly case” because necessity of introducing matching constructs. This judgment is bolstered by
the elegance of the λ-calculus (whether typed or untyped). For example, the addition of positive
types makes characterizing equality on expressions much more difficult. Type systems based on
the sequent calculus (including its semi-axiomatic form) are more equitable and in a sense closer
to models of computations such as Turing machines. Perhaps the dichotomy between functional
(Church’s λ-calculus) and imperative (Turing machines) notions of computation can be recast as
the tension between negative (Church) and positive (Turing) types.

In any case, in much of the work on continuation-passing transformation there is a strong focus
on functions. This is also the case in the technical report Danvy and Pfenning [1995] upon which
this lecture is based. We define a transformation

∥e∥ K = e′

where e is a source expression, K is a metalavel continuation, and e′ is an expression in continuation-
passing style.

There are different translations of this kind, depending on whether we want to model call-
by-value or call-by-name, left-to-right or right-to-left, and whether continuation are passed to
functions first or last. We describe the call-by-value, left-to-right, continuations-last approach.

We start with functions. They take an extra argument, which is they continuation to call with
their value instead of returning it. Also, a λ-expression is a value, so we pass the translated form
to the continuation.

∥λx. e∥ K = K (λx. λk. ∥e∥ (λt. k t))

Let’s examine the parallels with our translation from ND to Sax:

Jλx. eK d = write d ((x, y) ⇒ JeKy)

• Applying K corresponds to writing to d.

• The extra variable y (which is destination for the function) corresponds to the continuation
variable k.

• Translating the body of the function with continuation k corresponds to translation the body
of the function with destination y.

LECTURE NOTES APRIL 8, 2025



Continuation-Passing Style L20.3

Now we look at application. Recall:

Je1 e2K d = cut t1 % create destination for function
Je1K t1 % write function to t1

cut t2 % create destination for argument
Je2K t2 % write argument value to t2

read t1 (t2, d) % apply function to value, writing result to d

Translating this to continuation-passing:

• Instead of creating fresh destinations t1 and t2 we create fresh continuations, taking t1 and
t2 as arguments, respectively.

• Instead of passing the pair (t1, d), we use the curried form, passing first t2 and then the
original continuation K (in η-expanded form in order to allow the object-level abstraction
λv).

∥e1 e2∥ K = ∥e1∥ (λt1. ∥e2∥ (λt2. t1 t2 (λv.K(v))))

One important observation is that the Sax code is explicitly parallel (due to the nature of the cut),
while the CPS translation is explicitly sequential. That’s because the purposes are different: CPS
is supposed to fix evaluation order, but translation to Sax actually uncovers latent parallelism.

To complete the translation, variables stand for values so they are just passed to the continua-
tion.

∥x∥ K = K(x)

This corresponds to
JxK d = id d x

Here is a summary of the translation:

∥x∥ K = K (x)

∥λx. e∥ K = K (λx. λk. ∥e∥ (λt. k t))

∥e1 e2∥ K = ∥e1∥ (λt1. ∥e2∥ (λt2. t1 t2 (λv.K(v))))

3 A Small Example

Let’s translate
λx. f x (g x)

for some variables f and g. We want the translation to return a function in continuation-passing
style, so at the top level we call it with the continuation λt. t. When the focus of the step is embed-

LECTURE NOTES APRIL 8, 2025



Continuation-Passing Style L20.4

ded, we highlight it in blue.

∥λx. f x (g x)∥ (λt. t)

= (λt. t) (λx. λk. ∥f x (g x)∥ λt. k t)

= λx. λk. ∥f x (g x)∥ λt. k t

= λx. λk. ∥f x∥ (λt1. ∥g x∥ (λt2. t1 t2 (λv. (λt. k t) v)))

= λx. λk. ∥f x∥ (λt1. ∥g x∥ (λt2. t1 t2 (λv. k v)))
= λx. λk. ∥f x∥ (λt1. ∥g∥ (λt3. ∥x∥ (λt4. t3 t4 (λw. (λt2. t1 t2 (λv. k v)) (w)))))

= λx. λk. ∥f x∥ (λt1. ∥g∥ (λt3. ∥x∥ (λt4. t3 t4 (λw. t1w (λv. k v)))))

= λx. λk. ∥f x∥ (λt1. ∥g∥ (λt3. t3 x (λw. t1w (λv. k v))))

= λx. λk. ∥f x∥ (λt1. g x (λw. t1w (λv. k v)))

= λx. λk. ∥f∥ (λt5. ∥x∥ (λt6. t5 t6 (λu. (λt1. g x (λw. t1w (λv. k v)))u)))

= λx. λk. ∥f∥ (λt5. ∥x∥ (λt6. t5 t6 (λu. g x (λw. uw (λv. k v)))))

= λx. λk. f x (λu. g x (λw. uw (λv. k v)))

We can understant the final line as saying:

1. The translated function takes x and a continuation k as argument.

2. Evaluate f x, call the result u.

3. Evaluate g x, call the result w.

4. Apply u to w, call the result v.

5. Pass v to k.

This is a perfectly sensible interpretation what the initial function should do in continuation-
passing style.

4 Typing

Without giving it much thought, we would give the translation the meta-level type

∥−∥ : exp→ (val→ val)→ val

As often for continuation-passing style, the result type val is fixed only because of the chosen initial
continuation. More generally, the translation proper would have type

∥−∥ : exp→ (val→ τ)→ τ

for the so-called final answer type τ . This misses the fact that the continuation (val → τ) is used
linearly, so with more precision we could write

∥−∥ : exp→ (val→ τ) ⊸ τ

Actually, come to think of it, the input expression is analyzed linearly and so are the intermediate
values, so we might have

∥−∥ : exp ⊸ (val ⊸ τ) ⊸ τ

LECTURE NOTES APRIL 8, 2025



Continuation-Passing Style L20.5

This strong typing doesn’t translate fully to typing of the object language. If Γ ⊢ e : A then
Γ∗, k : A∗ → τ ⊢ ∥e∥ (λt. k t) : τ where we define

(A→B)∗ = A∗ → (B∗ → τ)→ τ

and base types remain unchanged.
In this translation, the continuation variable k is used linearly. In fact, we have a stronger

property namely that at any point in the translation there is exactly one continuation variable k in
scope, which will be used exactly once. This property is taken advantage of in the Standard ML
of New Jersey compiler which does translate the source to an intermediate form in continuation-
passing style. It is confirmed by the relationship to destination passing style: the destination is in
the succedent of the typing judgment, which is always a singleton. For the continuation, this is
not enforced at the level of judgments in a similar way.

We can capture the linearity part of this observation in the type translation:

(A→B)∗ = A∗ → (B∗ → τ) ⊸ τ

On the other hand, the functions from A∗ and B∗ are not necessarily linear because they represent
functions at the object level. Now if those were typed, say, linearly, then their translations would
also be linear (and the same for other substructural properties).

This linearity property (and some variations thereof) where noted by Berdine et al. [2002].
Later is was noted by Danvy [1994] that the temporary variables introduced by the CPS transla-
tion satisfy an ordering property. Terms satisfying this property can be translated back to direct
style. At this time we have not investigated if this ordering among the temporary variables can be
captured using (possible adjoint) ordered types.

5 Other Constructs

Knowing the compilation from ND to Sax, the translation of other constructs is not difficult. For
negative types, we have to introduce a new continuation for the embedded expressions while
positive types are simpler. Starting with lazy records.

∥{ℓ ⇒ eℓ}ℓ∈L∥ K = K ({ℓ ⇒ λk. ∥eℓ∥ (λt. k t)}ℓ∈L)

∥e.ℓ∥ K = ∥e∥ (λt. t.ℓ (λv.K(v)))

And eager pairs.

∥(e1, e2)∥ K = ∥e1∥ (λt1. ∥e2∥ (λt2.K (t1, t2)))

∥match e ((x, y) ⇒ e′)∥ K = ∥e∥ (λt.match t ((x, y) ⇒ ∥e′∥ K))

We’ll leave it at that, since there is not particular difficulty. It is a useful exercise to remind yourself
of our compilation and recognize the parallels in the patterns.

One thing that should be noted is that while there is a strong analogy between the continuation-
passing translation and translation to destination-passing style, in some ways continuations are a
lot more powerful because of what they allow us to do with a value returned. For example, we
can build in certain classes of exceptions by using a (linear, lazy) pair of continuations, one for
success and one for the exception [Berdine et al., 2002]. Or we can go so far as callcc as mentioned
in the introduction. The latter will not use its continuations linearly, and as such adds essential
expressive power, but at the expense of writing code in an effectful language that is much more
difficult to reason about that a pure functional language.

LECTURE NOTES APRIL 8, 2025



Continuation-Passing Style L20.6

References

Josh Berdine, Peter O’Hearn, Uday S. Reddy, and Hayo Thielecke. Linear continuation-passing.
Higher-Order and Symbolic Computation, 15:181–208, September 2002.

Olivier Danvy. Back to direct style. Science of Computer Programming, 22(3):183–195, 1994.

Olivier Danvy and Frank Pfenning. The occurrence of continuation parameters in CPS terms.
Technical Report CMU-CS-95-121, Department of Computer Science, Carnegie Mellon Univer-
sity, February 1995.

John C. Reynolds. Definitional interpreters for higher-order programming languages. In Proceed-
ings of the ACM Annual Conference, pages 717–740, Boston, Massachusetts, August 1972. ACM
Press. Reprinted in Higher-Order and Symbolic Computation, 11(4), pp.363–397, 1998.

LECTURE NOTES APRIL 8, 2025


	Introduction
	Functions
	A Small Example
	Typing
	Other Constructs

