Lecture Notes on
Sequent Calculus

15-417/817: HOT Compilation
Frank Pfenning

Lecture 17
March 25, 2025

1 Introduction

From the perspective of proof theory, our focus has been on natural deduction (for the ND lan-
guage) and the semi-axiomatic sequent calculus (for the Sax language). Hovering in the back-
ground has been the sequent calculus, one of the fundamental achievements of early proof theory
[Gentzen, 1935]. Gentzen used it to establish consistency for first-order logic via cut elimination.
Among his many insights were that classical and intuitionistic logic can be distinguished simply
by whether more than one proposition is allowed in the succedent.

Many properties of logics are most cleanly expressed and proved via the sequent calculus, even
if its computational interpretations have been somewhat slow in coming (see, for example, Ariola
etal. [2009], Caires and Pfenning [2010]). If we want to know if a logic makes sense (and, indirectly,
if a type system based on it makes sense) we usually fall back on the sequent calculus as our “gold
standard”. The key properties to check are cut and identity elimination. Their failure means
that the rule system or the logic itself is likely to be flawed. Beyond that we also have focusing
[Andreoli, 1992, Liang and Miller, 2009] as an almost universal property of logics derived from
their sequent calculus formulation. We have seen part of the latter under the name of inversion in
our development of nested pattern matching.

In today’s lecture we take a look at the sequent calculus in the form where the structural rules
that motivated adjoint logic are explicit. We start by considering an restriction of type-checking
that is part of Lab 4.

2 Opverloading

In an adjoint type system, a given definitions may have multiple different modes. These may
have different implementations. For example, at a mode that does not allow contraction we may
employ vertical reuse.

Because ND also supports subtyping for it equirecursive types, it may even have multiple
different and incomparable types. We restrict such overloading to metavariables, that is, top-level
definitions. How does this affect type checking?

Here is a simple example:

type bin[k] = +{’ : bin[k], ' : bin[k], ' : 1}

LECTURE NOTES MARCH 25, 2025

http://www.cs.cmu.edu/~fp/courses/15417-s25/labs/lab4-adj.pdf

Sequent Calculus L17.2

defn inc (x : bin) : bin = match x with
| "B0(y) => "bl(y)

| "bl(y) => '"b0(inc y)

| 7o) => "bl("e()

end

inst inc (x : bin[U]) : bin|[U]

inst inc (x : bin[L]) : bin[L]

The increment function is overloaded in a straightforward way: a linear version (which should be
able to reuse a lot of space) and a nonlinear version (which copies some bits in a number during
an increment).

When checking the first instance, the recursive call to inc should also use the type unrestricted
type. When checking the second instance, the recursive call should use use the linear type. In other
words, the type checker has to resolve overloading by picking the correct instance of a definition.

The most straightforward technique for this purpose is simply trying each declaration in turn
and backtracking as needed. In an expression such as inc (inc (inc (inc x))) this can be of
exponential cost. At least concerning is the error message in case an expression is not type-correct.
In a way, the best we can say is that all attempts at finding a type failed for a certain expression
failed. Since we don’t know which type was intended, this turns out to be rather unhelpful (as we
experienced with the research compiler that performs just such backtracking).

One optimization is derived from looking at the rule

I'ts=—B B<A
'Fs<= A

=/<

Here, we have use the letter s (for synthesizing) to emphasize that the expression must synthesize.
These are variables, instantiations of metavariables, and elimination form for negative types.

Synthesizing Exps s == xz|se]| s.k|s.force| F[o]

In general, it is expensive to synthesize a type for an expression, because in s e, the expression e
must be checked against an argument type. Similarly, in F'[o|, the substitution o must be checked
against A from the definition inst F[A] : B. It is the latter case that introduces nondeterminism
into the process, because there may be multiple instances for the same metavariables F'.

Rather than backtracking over all these choices, we can quickly filter out those that have a
chance to work in the larger context. That is, we change the = /<« rule to:

I'ts>»>B B<A T'ks=—B
I'Fs<— A

=/<

The first premise I' F s > B is a quick check to identify those instances which could be subtypes
of A. In the last premise we then only have to see if those candidates actually are correct.

The new judgment I' - s > B synthesizes the target type B given I' and s, without guarantee-
ing that s actually has the type. It is defined by the following rules, where we use X to refer to all

LECTURE NOTES MARCH 25, 2025

Sequent Calculus L17.3

the instance declarations in a programs.

z:BeTl I'Fs>A— B
—— >var >
I'Fa>B I'-se> B
FFS>>&{£:AK}5€L (k‘GL) F}—8>>TB
>& >
'k s.k> By I'+ s.force > B

inst F[A]: Be X
Ik Flo]> B

>defn

In addition to this optimization, we also need to make sure to check the definition of a metavari-
able against each of the given instance types.

At some level, the target type judgment can be used as a prefilter to cut down on nondeter-
minism and backtracking. Instead, in Lab 4 we explore the following option: pick the lexically
first instance of a metavariable such that I' - s > B for B < A for this instance. This makes the
type-checker incomplete because the first such instance may actually fail during full synthesis,
while a later such instance may succeed.

Unfortunately, a second problem arises: synthesis is also used in the the general matching rule

'rs=B AFBB>KT<C
I';AFmatchs KT < C

Now we don’t have a target to compare B to, and seeing which patterns may directly (or eventu-
ally) work is quite deterministic. The research compiler will just backtrack, where the scope of the
backtracking is at least somewhat limited by the check against C'.

For Lab 4, we require s not to contain a metavariable at its head so that the synthesized type is
unique by the typing rules. This restriction is not really viable in practice, so an interesting research
problem is how to allow some nondeterminism here without jeopardizing practical efficiency and
while retaining reasonable error messages.

3 Comonads and Monads

Something else we have been meaning to mention is that the notion of comonad [Davies and
Pfenning, 2001, Pfenning and Davies, 2001] and (strong) monad [Moggi, 1989, Wadler, 1992], both
of which are significant in many lines of research on functional programming are easily derived
in the adjoint framework.

We work with the following modes:

vV V>U o(V) ={C,W}
U U>X,U>L o(U)={C,W}
X o(X) = {C,W}
L o(L)={}

and define
A LTV AL linear logic exponential

A
04 £ |¥MVA, modal S4 necessity, a comonad
OA = 1yA, lax modality, a strong monad

With these derived notions we can reanalyze or recreate the typical applications of monad and
comonads in logic and programming.

LECTURE NOTES MARCH 25, 2025

Sequent Calculus L17.4

4 Sequent Calculus

Now we return to our original lecture topic: the sequent calculus. We specify it in a form where
the order of the antecedents is irrelevant, but other structural rules are explicit and only allowed
based on the mode. We only given a brief introduction here; the full calculus and proofs of its
properties can be found in Pruiksma et al. [2018].

Whenever we write a sequent I' - A,,, we presuppose that I' > m, just as in its semi-axiomatic
form. This independence is central to the proof of cut elimination.

We have the following structural rules.

(Ceo(m)) T,An, AntEC, (Weo(m)) I'FC,
r A FC. contract A FC, weaken

The names of contraction and weakening make sense when reading these rules from the premises
towards the conclusion. We also have the general rules of identity and cut.

IT>m>r) THA, AA,FC,
— id cut
A F A I''AFC,

Notice that in the cut rule we do not use the context join operator I' ; A. Instead, we combine
the antecedents from the two premises, possibly with duplicates. If their modes permit, these can
then be contracted (using the rule contract).

Besides these general rules, each connective is then defined by its left and right rules, per-
taining to an antecedent or the succedent, respectively. We show only two samples, referring to
Pruiksma et al. [2018] for a complete set of rules.

T, A, By, - C, T4, AFB,
®L ©R
I'A, ® By, - C, AR A, ®B,
(C>m) TFA4, A Bn+C, T, A, By,
L —m " LR
T.A, A, — By, F C, - T+ A, — B,

In Sax, the right rules for positive connectives (here ® R) and the left rules for negative connectives
(here — L) turn into axioms. You can find the rules in Lecture 14.

The property of identity states that we need the identity rule only for atomic proposition A,
and all others are derived. This is proved by an induction over the structure of A.

We also have cut elimination, that is, if we can prove a sequent I' - A,,, with cut, then there
also is a proof without cut. This is usually proved by stating that the rule of cut is admissible, that
is, if both premises can be derived without cut, so can the conclusion. We write this as

TC>m>r) THA, AA,FC,
I'AFC,

cut

where the dashed line means that the rule is claimed to be admissible rather than primitive.

This is often proved by a nested induction, first on the structure of cut formula A,, and second
simultaneously on the structure of the two premises (one must get smaller while the other stays
the same). The rule of contraction throws a wrench into the works of such a proof, but it can be
repaired by cutting multiple occurrences of the same formula A4,, at once (see Gentzen [1935] for
the original calculus, and Pruiksma et al. [2018] for the adjoint sequent calculus).

LECTURE NOTES MARCH 25, 2025

http://www.cs.cmu.edu/~fp/courses/15417-s25/lectures/14-adjsax.pdf

Sequent Calculus L17.5

We show some key cut reductions because they are often at the core of the dynamics of a lan-
guage. As an example, we can see that for the linear sequent calculus Caires and Pfenning [2010],
Caires et al. [2016] where it corresponds to synchronous communication according to session types
[Honda et al., 1998]. We show just two examples. In the first, we elide the independence con-
straints since they are trivially satisfied by presupposition.

D1 D, o
I'n+A4,, TI'st+ B, A A, By EC
QR QL
I'n,I's - A, ® B, AA, QB C,
cutaxB
I',I'y, AFC,
—
D &
Fl l_ Am A, Am, Bm l_ CT
Dy cutyg
I's - B, I'y, Bn, A+ C,
cutp
[, T, ARGy

We see that a cut at type A ® B is replaced by two cuts, one at A and one at B, which means the
induction measure becomes smaller.
As indicated above, contraction is more difficult.

g/
(Cea(m)) A An, AntC,

D contract
'>m>r) THA, A AL EC,

T,AFC,

cuty

D &
Fl_Am A,Am,Aml_CT‘
D cuty
r-A,, A AL FCy

I,T,AFC,
T,AFC,

cuty

contract x |I|

The reason we can apply contraction at the end of the derivation is that C € o(m) and I' > m. By
monotonicity, we also have C € o(k) forevery y : By, € I'.

The sad fact is, however, that while the top cut on D and &’ is on smaller derivations, the
second cut is not. So to turn this into a proof of the admissibility of cut, we need the idea of the
multicut floated above (and found in Pruiksma et al. [2018]).

References

Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Journal of Logic and
Computation, 2(3):197-347, 1992.

LECTURE NOTES MARCH 25, 2025

Sequent Calculus L17.6

Zena M. Ariola, Aaron Bohannon, and Amr Sabry. Sequent calculi and abstract machines. ACM
Transactions on Programming Languages and Systems, 31(4):13:1-13:48, May 2009.

Luis Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In Proceedings
of the 21st International Conference on Concurrency Theory (CONCUR 2010), pages 222-236, Paris,
France, August 2010. Springer LNCS 6269.

Luis Caires, Frank Pfenning, and Bernardo Toninho. Linear logic propositions as session types.
Mathematical Structures in Computer Science, 26(3):367—423, 2016. Special Issue on Behavioural

Types.

Rowan Davies and Frank Pfenning. A modal analysis of staged computation. Journal of the ACM,
48(3):555-604, May 2001.

Gerhard Gentzen. Untersuchungen tiber das logische SchliefSen. Mathematische Zeitschrift, 39:176—
210, 405431, 1935. English translation in M. E. Szabo, editor, The Collected Papers of Gerhard
Gentzen, pages 68-131, North-Holland, 1969.

Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and type discipline
for structured communication-based programming. In C. Hankin, editor, 7th European Sympo-
sium on Programming Languages and Systems (ESOP 1998), pages 122-138. Springer LNCS 1381,
1998.

Chuck Liang and Dale Miller. Focusing and polarization in linear, intuitionistic, and classical
logics. Theoretical Computer Science, 410(46):4747-4768, November 2009.

Eugenio Moggi. Computational lambda calculus and monads. In Proceedings of the Fourth Sympo-
sium on Logic in Computer Science, pages 14-23, Asilomar, California, June 1989. IEEE Computer
Society Press.

Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic. Mathematical
Structures in Computer Science, 11:511-540, 2001. Notes to an invited talk at the Workshop on
Intuitionistic Modal Logics and Applications (IMLA’99), Trento, Italy, July 1999.

Klaas Pruiksma, Willow Chargin, Frank Pfenning, and Jason Reed. Adjoint logic. Unpublished
manuscript, April 2018. URL http://www.cs.cmu.edu/~fp/papers/adjoint18b.pdf.

Philip Wadler. The essence of functional programming. In Conference Record of the 19th Symposium
on Principles of Programming Languages, pages 1-14, Albuquerque, January 1992. ACM Press.

LECTURE NOTES MARCH 25, 2025

http://www.cs.cmu.edu/~fp/papers/adjoint18b.pdf

	Introduction
	Overloading
	Comonads and Monads
	Sequent Calculus

